Marine Geology最新文献

筛选
英文 中文
An oceanic core complex and its associated weathered hydrothermal deposit on a ridge-transform intersection zone at 23°S, Southern Mid-Atlantic Ridge 南大西洋中脊 23°S 海脊-变形交汇区的大洋核心复合体及其相关风化热液沉积物
IF 2.6 3区 地球科学
Marine Geology Pub Date : 2024-07-11 DOI: 10.1016/j.margeo.2024.107360
Bing Li , Jixin Wang , Chuanshun Li , Sai Wang , Lei Fan , Jun Ye , Yuan Dang , Quanshu Yan , Xuefa Shi
{"title":"An oceanic core complex and its associated weathered hydrothermal deposit on a ridge-transform intersection zone at 23°S, Southern Mid-Atlantic Ridge","authors":"Bing Li ,&nbsp;Jixin Wang ,&nbsp;Chuanshun Li ,&nbsp;Sai Wang ,&nbsp;Lei Fan ,&nbsp;Jun Ye ,&nbsp;Yuan Dang ,&nbsp;Quanshu Yan ,&nbsp;Xuefa Shi","doi":"10.1016/j.margeo.2024.107360","DOIUrl":"https://doi.org/10.1016/j.margeo.2024.107360","url":null,"abstract":"<div><p>Numerous investigations into the northern Mid-Atlantic Ridge (the NMAR), a typical slow-spreading mid-ocean ridge, have revealed that NMAR is favorable for the development of long-lived detachment faults and the formation of oceanic core complexes (OCCs). OCCs are often conducive to the development of ultramafic-hosted hydrothermal deposits with significant resource potential. However, as a counterpart of the NMAR on the Southern Hemisphere, the southern Mid-Atlantic Ridge (SMAR), also belonging to the class of slow-spreading ridges, has only received very limited investigation. This prompts the inquiry as to whether the SMAR, like the NMAR, can foster the development of OCC and associated hydrothermal deposit. To address this issue, we present the identification of an OCC (named as Kaifeng OCC) at the intersection of the SMAR and the Martin Vaz transform fault (∼23°S). This discovery is accompanied by evidence detailing a new detachment fault breakaway on an old detachment footwall. Collected samples reveal indications of hydrothermal activity, encompassing (1) residual sulfide containing chalcopyrite within honeycomb-like structures, (2) reddish-brown Fe oxides and atacamite, partially concretized by dolomite, and (3) a dark gray Mn-oxide crust. These mineralogical features indicate the presence of gossans, commonly iron oxide-dominated cover layers that envelope the outer surface of weathered seafloor sulfide deposits, which subsequently undergo modifications due to subsequent hydrothermal activities. Our work proves the existence of OCC and associated hydrothermal deposits at a ridge-transform intersection of the SMAR.</p></div>","PeriodicalId":18229,"journal":{"name":"Marine Geology","volume":"475 ","pages":"Article 107360"},"PeriodicalIF":2.6,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141607322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Morphology and evolution of submarine canyons around the Zhongsha Platform, South China Sea: Implications for sedimentary processes in a modern isolated carbonate setting 中国南海中沙平台周围海底峡谷的形态和演化:对现代孤立碳酸盐环境中沉积过程的影响
IF 2.6 3区 地球科学
Marine Geology Pub Date : 2024-07-10 DOI: 10.1016/j.margeo.2024.107362
Junjin Chen , Shiguo Wu , Qi Li , Chenglong Wei , Guowei Fu , Wanli Chen , Yongpeng Qin , Umair Khan , Songlin Wu
{"title":"Morphology and evolution of submarine canyons around the Zhongsha Platform, South China Sea: Implications for sedimentary processes in a modern isolated carbonate setting","authors":"Junjin Chen ,&nbsp;Shiguo Wu ,&nbsp;Qi Li ,&nbsp;Chenglong Wei ,&nbsp;Guowei Fu ,&nbsp;Wanli Chen ,&nbsp;Yongpeng Qin ,&nbsp;Umair Khan ,&nbsp;Songlin Wu","doi":"10.1016/j.margeo.2024.107362","DOIUrl":"10.1016/j.margeo.2024.107362","url":null,"abstract":"<div><p>Recent high-resolution multibeam bathymetry and seismic data from the platform-top to the abyssal plain of the Zhongsha Platform allow for a detailed investigation of the morphologies, spatial distribution, and trigger mechanisms of submarine canyons, submarine landslides, and associated sedimentary features along modern isolated carbonate slopes. The newly observed Zhongsha Canyon System provides a natural laboratory for reconstructing the source-to-sink sedimentary processes in a pure carbonate setting. This study reveals that there are thirty-four submarine canyons at water depths between 300 and 4100 m on the northern and western slopes of the Zhongsha Platform. Two morphologically different submarine canyon types are identified: (1) dendritic canyons, which exhibit abundant tributaries with scallop-shaped failures at the canyon heads, and (2) linear canyons, which feature rare tributaries with elongated failures at the canyon heads. The dendritic canyons are more complex in morphology than the linear canyons as a result of the interaction among numerous tributaries. Canyon initiation and evolution pass through three phases: (1) initial stage: off-platform sediment transport and platform margin failures contribute to erosive gravity flows; (2) developmental stage: initiation and incision of submarine canyons along platform margin failures; and (3) mature stage: numerous mature canyons along the platform margin. Off-platform sediment transport, density cascading, gravity flows, monsoon currents, and deep circulation play an essential role in shaping the slope morphologies. In addition, submarine landslides are extensively observed along the entire slope of the Zhongsha Platform at water depths of 600 to 4200 m, including canyon-wall failures, slope landslides, canyon-front landslides, and slope-toe failures based on their location and genesis. These processes can steepen the platform slopes by upward retrogressive and downward progressive erosion. On a larger scale, the persistent submarine canyons and occurrence of landslides around the Zhongsha Platform contribute to the uniqueness of this landscape among modern carbonate slopes. The morphologies and evolutionary processes of Zhongsha Canyon System present significant differences from the global carbonate submarine canyons in terms of their dimensions and trigger mechanisms. The findings of this work provide novel insights into the morphological features and sedimentary processes of submarine canyons in modern isolated carbonate platform settings.</p></div>","PeriodicalId":18229,"journal":{"name":"Marine Geology","volume":"475 ","pages":"Article 107362"},"PeriodicalIF":2.6,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141691879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of typhoon on suspended sediment concentration, bed erosion and sediment transport in the Yangtze Estuary 台风对长江口悬浮泥沙浓度、河床侵蚀和泥沙输移的影响
IF 2.6 3区 地球科学
Marine Geology Pub Date : 2024-07-10 DOI: 10.1016/j.margeo.2024.107357
Huikun Yao , Xiaoqiang Liu , Maotian Li , Weihua Li , Yan Song , Zijie Tan , Wenyan Zhang , Dan Peng , Yan Liu , Jing Chen , Said A. Shetaia
{"title":"Effect of typhoon on suspended sediment concentration, bed erosion and sediment transport in the Yangtze Estuary","authors":"Huikun Yao ,&nbsp;Xiaoqiang Liu ,&nbsp;Maotian Li ,&nbsp;Weihua Li ,&nbsp;Yan Song ,&nbsp;Zijie Tan ,&nbsp;Wenyan Zhang ,&nbsp;Dan Peng ,&nbsp;Yan Liu ,&nbsp;Jing Chen ,&nbsp;Said A. Shetaia","doi":"10.1016/j.margeo.2024.107357","DOIUrl":"10.1016/j.margeo.2024.107357","url":null,"abstract":"<div><p>Annually 5–6 typhoons strike the Yangtze Estuary (YE) as extreme events. However, their high energy and importance for sediment transportation and geomorphic changes are still not fully understood. In this study, high-resolution observations of wind, wave, flow velocity, and suspended sediment concentration (SSC) at two in-situ stations were carried out during the 2022 Hinnamnor typhoon. Additionally, we simulated the change in SSC, estuarine bed erosion/deposition, and flow and sediment transport with and without a typhoon in the YE using MIKE3 numerical model. The findings revealed that the Hinnamnor typhoon-induced waves increased the SSC of the turbidity maximum zone (TMZ) by a factor of 5.6 times (maximum is 2.8 kg/m<sup>3</sup>). The TMZ area also extended by 2.68 times (maximum is 7880km<sup>2</sup>, 70.4% of YE) in the YE. Moreover, the typhoon caused a dramatic change in sediment transport and bed erosion/deposition in the YE. First, in the delta front area where the mean water depth is &gt;5 m, the typhoon significantly increased the southward flux of residual flow and sediment, causing sediment transport into Hangzhou Bay to abruptly increase 26.3 times (increase of 52 million tons, accounting for 1/3 of the present annual flux of the Yangtze River (150 million tons)) during a single spring-neap period. The net erosional area and volume extended to 6770km<sup>2</sup> (60.4% of YE) and 91.18 × 10<sup>6</sup> m<sup>3</sup>. Second, in the delta shoals (where the mean water depth is &lt;5 m, including east Chongming Shoal, Hengsha Shoal, Jiuduansha Shoal, and east-south Nanhui Shoal), residual flow and sediment flux decreased northward from the typhoon and resulted in the erosion of the shoal. Third, in channels with trumpet-shaped mouths (North Branch (NB), North Channel (NC) and South Passage (SP), except for North Passage (NP)), the upward flux of residual flow and sediment increased due to the typhoon, resulting in bed deposition in these channels (NB, NC and SP). This study highlights the important influence of typhoons on flow and sediment transport and bed erosion in estuarine areas.</p></div>","PeriodicalId":18229,"journal":{"name":"Marine Geology","volume":"475 ","pages":"Article 107357"},"PeriodicalIF":2.6,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141639122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Internal sand bank seismic stratigraphy provides insight into paleo-barrier island preservation 内部沙堤地震地层学为古屏障岛的保存提供了启示
IF 2.6 3区 地球科学
Marine Geology Pub Date : 2024-07-08 DOI: 10.1016/j.margeo.2024.107359
Carson B. Miller , John A. Goff , Sean P.S. Gulick , Davin J. Wallace , Christopher M. Lowery
{"title":"Internal sand bank seismic stratigraphy provides insight into paleo-barrier island preservation","authors":"Carson B. Miller ,&nbsp;John A. Goff ,&nbsp;Sean P.S. Gulick ,&nbsp;Davin J. Wallace ,&nbsp;Christopher M. Lowery","doi":"10.1016/j.margeo.2024.107359","DOIUrl":"10.1016/j.margeo.2024.107359","url":null,"abstract":"<div><p>Barrier islands are rarely preserved on continental shelves following sea-level rise. Proxies like overwash deposits, tidal inlets, and wave ravinements identify the location of paleo-barrier islands through time. Barrier island remnants are potential sand resources for beach nourishment to combat shoreline erosion from increasing rates of sea-level rise. Additionally, understanding the conditions that lead to barrier island drowning can be used to advise coastal policy makers. This study aims to identify barrier island signatures and deposits to understand the coastal processes that maximize preservation of paleo-barrier island remnants. We employed high resolution chirp sub-bottom data coupled with legacy sediment cores collected over Heald and Sabine Banks, on the east Texas shelf, which have been identified as possible preserved barrier island associated facies. Heald Bank exhibits a predominantly homogenous, low-amplitude facies with few low-amplitude internal horizons overlying the transgressive ravinement, whereas Sabine Bank consists of high-amplitude, landward-dipping reflectors beneath this surface, likely indicative of preserved subaqueous overwash deposits. This stratigraphy suggests Sabine Bank includes barrier island associated facies, whereas Heald Bank is mostly a marine sand bank. The overwash unit of Sabine Bank displays landward-thinning and landward-dipping deposits with reflections increasing in amplitude and displaying lower slopes to the NW. We hypothesize that higher slopes to the SE indicate proximity to the former barrier island. The Sabine River paleo-valley is mostly filled with estuarine sediment, leaving only ∼4 m of antecedent accommodation in a limited area of the NE portion of the paleo-valley. The low shelf gradient, which increases accommodation, and initially high sediment supply that decreased during the drowning of Sabine Bank are the major factors controlling partial preservation of the subaqueous portion of the paleo-barrier island.</p></div>","PeriodicalId":18229,"journal":{"name":"Marine Geology","volume":"475 ","pages":"Article 107359"},"PeriodicalIF":2.6,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141689956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Depositional control on the fate of reactive iron in shelf sediments since the last deglaciation: A case study of the East China Sea 末次冰期以来陆架沉积物中活性铁命运的沉积控制:东海案例研究
IF 2.6 3区 地球科学
Marine Geology Pub Date : 2024-07-08 DOI: 10.1016/j.margeo.2024.107358
Fanxing Kong , Xiting Liu , Anchun Li , Jiang Dong , Houjie Wang , Guangchao Zhuang , Zihu Zhang , Chao Li
{"title":"Depositional control on the fate of reactive iron in shelf sediments since the last deglaciation: A case study of the East China Sea","authors":"Fanxing Kong ,&nbsp;Xiting Liu ,&nbsp;Anchun Li ,&nbsp;Jiang Dong ,&nbsp;Houjie Wang ,&nbsp;Guangchao Zhuang ,&nbsp;Zihu Zhang ,&nbsp;Chao Li","doi":"10.1016/j.margeo.2024.107358","DOIUrl":"https://doi.org/10.1016/j.margeo.2024.107358","url":null,"abstract":"<div><p>The East China Sea (ECS) is located between the Eurasian continent and the Pacific Ocean with a wide continental shelf, which acts as a potential source of reactive iron in the Western Pacific. However, the source and fate of reactive iron in continental shelf sediments of the ECS remain poorly constrained. Here, we examined the influence of the depositional environment on the fate of reactive iron on the continental shelf of the ECS since the last deglaciation. The contents of redox-sensitive elements (U and Mo) indicate that the sediments in the ECS inner shelf have primarily deposited in oxic and suboxic environments since 18.5 ka. The ratio of reactive iron to total iron (Fe<sub>HR</sub>/Fe<sub>T</sub>) ranges from 0.24 to 0.41, and the ratio of total iron to aluminum (Fe<sub>T</sub>/Al) is approximately 0.55 ± 0.11. These ratios suggest that the majority of reactive iron is derived from fine-grained terrestrial sediments discharged by the Changjiang River. The contents of Fe<sub>py</sub> and Fe<sub>carb</sub> exhibit opposite trends with depth in the core, indicating competition between carbonate (bicarbonate) ions and sulfide ions for ferrous ions. This competition is primarily controlled by the depositional environment and redox state since 18.5 ka. The Fe<sub>carb</sub> is the dominant iron speciation throughout the core sediments, but its abundance declined since 13.2 ka when the ECS inner shelf was influenced by seawater transgression due to deglacial sea-level rise. The Fe<sub>py</sub> content reached its maximum when the ECS inner shelf was fully flooded. Our study highlights the depositional control on the source-sink processes of reactive iron, providing new insights into the fate of reactive iron on continental shelves in response to environmental evolution.</p></div>","PeriodicalId":18229,"journal":{"name":"Marine Geology","volume":"475 ","pages":"Article 107358"},"PeriodicalIF":2.6,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141593015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Formation and hydrothermal alteration of a volcanic center: Melt pooling and mass transfers at Langseth Ridge (Gakkel Ridge, Arctic Ocean) 火山中心的形成和热液蚀变:兰塞斯海脊(北冰洋加克尔海脊)的熔体汇集和质量转移
IF 2.6 3区 地球科学
Marine Geology Pub Date : 2024-07-06 DOI: 10.1016/j.margeo.2024.107347
Elmar Albers , Nele Behrendt , Alexander Diehl , Felix Genske , Patrick Monien , Simone A. Kasemann , Autun Purser , Antje Boetius , Wolfgang Bach
{"title":"Formation and hydrothermal alteration of a volcanic center: Melt pooling and mass transfers at Langseth Ridge (Gakkel Ridge, Arctic Ocean)","authors":"Elmar Albers ,&nbsp;Nele Behrendt ,&nbsp;Alexander Diehl ,&nbsp;Felix Genske ,&nbsp;Patrick Monien ,&nbsp;Simone A. Kasemann ,&nbsp;Autun Purser ,&nbsp;Antje Boetius ,&nbsp;Wolfgang Bach","doi":"10.1016/j.margeo.2024.107347","DOIUrl":"10.1016/j.margeo.2024.107347","url":null,"abstract":"<div><p>Volcanic centers are characteristic features of ultraslow-spreading mid-ocean ridges, the least-explored parts of the global ridge system. Volcanic centers can provide insights into deep magmatic and metamorphic processes at these ridges. Here, we present data from the largest volcanic center on the Gakkel Ridge, the Langseth Ridge, situated at 60–62°E. Langseth is ∼10 km wide, consisting of three peaks that rise to 585 m water depth, some 3–4 km above the surrounding seafloor. It strikes perpendicular to Gakkel's spreading direction and can be traced for ∼40 km, which translates to an age of ∼8 Myr. Seafloor imaging revealed abundant (pillow) basalt but also fissures and geologic faults across the Langseth Ridge. Basaltic rocks were sampled at all summits and diabase at the slope of the northern summit that dips into the rift valley.</p><p>Our samples are of normal to depleted mid-ocean ridge basalt composition and exhibit a wide range of major and trace element contents, due to magmatic processes, accumulation of macrocrysts, and hydrothermal alteration. Radiogenic isotope ratios, most notably <sup>143</sup>Nd/<sup>144</sup>Nd and <sup>208</sup>Pb/<sup>206</sup>Pb, trend from typical rift valley compositions to isotopically enriched values with increasing distance to the rift valley. This trend may imply melt pooling from different sources, potentially representing a shift from shallow melting beneath the rift valley to deeper melting of enriched sources and higher degrees of melting underneath Langseth. Mineral compositions and plagioclase sieve textures imply prolonged storage of magma at depth prior to eruption. Hydrothermal alteration occurred over a range of conditions. Basalt from the summits is weakly altered at temperatures ≪100 °C, which likely occurred in situ at the summit sites. Diabase samples experienced chloritization and albitization and display epidote and quartz veins, which formed at &gt;300 °C. These assemblages and temperatures are typical for lower crustal levels and imply uplift of the samples of &gt;1 km. Diabase samples from the Afanasenkov Seamount, another volcanic center on the Gakkel Ridge that we investigated for comparison, were altered under comparable conditions.</p><p>Our findings suggest a combined volcanic–tectonic origin of the studied volcanic centers, potentially implying that such complexes may generally form due to the interplay of magmatism and tectonics. Researching volcanic centers has the potential to further our understanding of both deep and shallow crustal processes at ultraslow-spreading ridges, providing further insights into the role of these centers as linkages between lithosphere and hydrosphere and the (deep) biosphere they sustain.</p></div>","PeriodicalId":18229,"journal":{"name":"Marine Geology","volume":"475 ","pages":"Article 107347"},"PeriodicalIF":2.6,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0025322724001312/pdfft?md5=2ebd8d3becc213c8ce46dae6b2bb5ff5&pid=1-s2.0-S0025322724001312-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141639123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Foraminiferal analysis of Holocene sea-level rise within the Trinity River Incised Paleo-Valley, Offshore Galveston Bay, Texas 对得克萨斯州加尔维斯顿湾近海特尼狄河古河谷内全新世海平面上升的有孔虫分析
IF 2.6 3区 地球科学
Marine Geology Pub Date : 2024-07-04 DOI: 10.1016/j.margeo.2024.107345
P. Standring , C.M. Lowery , J. Burstein , J. Swartz , J.A. Goff , S.P.S. Gulick , C.B. Miller
{"title":"Foraminiferal analysis of Holocene sea-level rise within the Trinity River Incised Paleo-Valley, Offshore Galveston Bay, Texas","authors":"P. Standring ,&nbsp;C.M. Lowery ,&nbsp;J. Burstein ,&nbsp;J. Swartz ,&nbsp;J.A. Goff ,&nbsp;S.P.S. Gulick ,&nbsp;C.B. Miller","doi":"10.1016/j.margeo.2024.107345","DOIUrl":"10.1016/j.margeo.2024.107345","url":null,"abstract":"<div><p>Regional variability of global sea-level rise remains an important area of study given the vulnerability of sediment-starved coastlines to coastal inundation, especially those in proximity to large population centers. Galveston Bay, Texas, is currently experiencing more than double the global rate of sea-level rise and is particularly vulnerable to storm inundation that will further destabilize the coastline. Limitations in instrumental observations necessitate the use of the geologic record preserved offshore modern Galveston Bay to understand how this particular coastline responds to periods of rapid sea-level rise. We present micropaleontological analysis of sediment cores combined with high-resolution seismic data to reconstruct the Holocene paleoestuary offshore Galveston Bay and its evolution since initial inundation ∼10 ka through marine transgression ∼6 ka. We find that despite rapid sea-level rise, the Galveston paleoestuary maintained relatively stable outer boundaries, and within the bay environmental shifts occurred as a result of probable marine incursions due to tidal inlet migrations. Paleoenvironmental changes in the early Holocene coincide with flooding events within other Texas Gulf Coast bays suggesting global sea-level rise played a prominent role. Middle to late Holocene changes occurred when rates of sea-level rise slowed, suggesting regional hydroclimate change played a more dominant role.</p></div>","PeriodicalId":18229,"journal":{"name":"Marine Geology","volume":"475 ","pages":"Article 107345"},"PeriodicalIF":2.6,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141623493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modern sedimentation and sediment budget in the South China Sea and their comparisons with the eastern China seas 南海现代沉积和沉积预算及其与中国东部海域的比较
IF 2.6 3区 地球科学
Marine Geology Pub Date : 2024-07-02 DOI: 10.1016/j.margeo.2024.107348
Jie Sheng , Shuqing Qiao , Xuefa Shi , Jianguo Liu , Yanguang Liu , Shengfa Liu , Kunshan Wang , Che Abd Rahim Mohamed , Somkiat Khokiattiwong , Narumol Kornkanitnan
{"title":"Modern sedimentation and sediment budget in the South China Sea and their comparisons with the eastern China seas","authors":"Jie Sheng ,&nbsp;Shuqing Qiao ,&nbsp;Xuefa Shi ,&nbsp;Jianguo Liu ,&nbsp;Yanguang Liu ,&nbsp;Shengfa Liu ,&nbsp;Kunshan Wang ,&nbsp;Che Abd Rahim Mohamed ,&nbsp;Somkiat Khokiattiwong ,&nbsp;Narumol Kornkanitnan","doi":"10.1016/j.margeo.2024.107348","DOIUrl":"https://doi.org/10.1016/j.margeo.2024.107348","url":null,"abstract":"<div><p>Sedimentation rates and sediment budgets are important agents to understand the source-to-sink dynamics in marginal seas. As a classical representative of mega-river dominated marginal seas globally, the South China Sea (SCS) receives huge amounts of fluvial input from mega rivers covering different climate zones. Despite its well-documented prevalence, quantifying the spatial distribution of sedimentation rate and sediment budget over the entire SCS remains a challenge due to limited data availability. In this study, we employed a comprehensive approach to quantify the modern sedimentation rates and sediment budget in the SCS. This approach combined <sup>210</sup>Pb measurements from 409 cores, AMS<sup>14</sup>C data from 112 cores, and 33 sediment trap observations. Our results show that higher sedimentation rates &gt;0.3 cm/a mainly occur in deltas, shelf mud areas, and upper continental slope that connects the submarine canyon. In the subaqueous Mekong Delta, for example, the sedimentation rates can exceed 10 cm/a. In contrast, there is no substantial modern sedimentation in sandy and gravelly areas of the shelf due to strong erosion by a combination of waves, tides and ocean currents. We further compare these results with the eastern China seas including the Bohai Sea, Yellow Sea and East China Sea. A similar spatial distribution of sedimentation rates can be observed in the continental shelf of the eastern China seas. The Holocene sedimentation rates in the deep-water regions of the SCS are generally &lt;100 cm/ka. The basin floor experiences the slowest accumulation, with rates below 3 cm/ka. In contrast, sedimentation rates on the eastern island slopes range from 3 to 8 cm/ka, while the northern, western, and southern continental slopes accumulate sediment most rapidly, exceeding 25 cm/ka. Approximately 1191.1 × 10<sup>6</sup> t of fine-grained sediment is deposited annually in the continental mud areas of the SCS, with a comparable amount of 1185.4 × 10<sup>6</sup> t/a deposited on the continental shelf of the eastern China seas. The continental slope accumulates sediment at a significantly higher rate (∼161.0–239.4 × 10<sup>6</sup> t/a) compared to the deep-water basin (∼16.5–20.1 × 10<sup>6</sup> t/a) in the SCS. Most of the modern sediments (&gt;98%) are deposited on the continental shelf and slope. In the SCS, fluvial inputs dominates modern sediment sources, contributing over 80% of the total. Coastal/seabed erosion and biogenic deposition account for approximately ∼18%, with eolian dust contributing less than &lt;2%. The findings presented here are critical for elucidating the sources, transport pathways, and deposition patterns of modern sediments in marginal seas.</p></div>","PeriodicalId":18229,"journal":{"name":"Marine Geology","volume":"475 ","pages":"Article 107348"},"PeriodicalIF":2.6,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141607321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Depositional model of the Holocene coquinas - Albardão platform, southern Brazil 全新世科基纳斯沉积模型--巴西南部阿尔巴当平台
IF 2.6 3区 地球科学
Marine Geology Pub Date : 2024-06-30 DOI: 10.1016/j.margeo.2024.107346
Paul Michael Nii Anang Okoe , Elírio Ernestino Toldo Júnior , Cristiano Fick , Eduardo Puhl , Maria Luiza Correa da Camara Rosa , José Carlos Rodrigues Nunes , Francisco Eduardo G. Cruz , Vinicius Carbone B. de Oliveira
{"title":"Depositional model of the Holocene coquinas - Albardão platform, southern Brazil","authors":"Paul Michael Nii Anang Okoe ,&nbsp;Elírio Ernestino Toldo Júnior ,&nbsp;Cristiano Fick ,&nbsp;Eduardo Puhl ,&nbsp;Maria Luiza Correa da Camara Rosa ,&nbsp;José Carlos Rodrigues Nunes ,&nbsp;Francisco Eduardo G. Cruz ,&nbsp;Vinicius Carbone B. de Oliveira","doi":"10.1016/j.margeo.2024.107346","DOIUrl":"https://doi.org/10.1016/j.margeo.2024.107346","url":null,"abstract":"<div><p>For the past decade, giant deepwater oil discoveries in the pre-salt section of the Campos and Santos basins of Brazil, have brought significant attention to offshore exploration activities along the South Atlantic margins. The prolific Cretaceous coquina deposits in these basins are part of the pre-salt rock record and constitute an effective but complex and heterogeneous hydrocarbon reservoir difficult to predict and model. Parting from this context, an evaluation of the sedimentological, structural and taphonomic criteria for coquinas are essential to better understand and predict the facies distribution and depositional models of the pre-salt coquinas strata. Based on this premise, the present work aims to genetically interpret 133 mixed carbonate-siliciclastic bottom sediments of the Albardão shelf – a modern marine coquina analogue, using facies description, investigating the relationship with hydrodynamic forces, and accessing the influence of morphology and structural framework on their deposition. From these analyses, we recognized a hybrid facies, three modern carbonate facies in analogy to the carbonate rock classification and four siliciclastic facies. These eight facies were then grouped into three facies associations representing high, moderate, and low energy facies. The high energy facies association comprises rudstones (Rf) and grainstones (Gf) with highly fragmented bivalve shells and barnacles abundantly present in the beach system, above the fair-weather wave base limit (FWWB). These facies also occur offshore on bathymetric highs above the storm wave base limit (SWB) but display less reworking than the coastal high energy facies above the FWWB due to wave shoaling. The moderate energy facies association consists of hybrid sand (Hs), sand (S) and muddy sand (mS) occurring between the FWWB and SWB limits in the offshore transition zone with extensive winnowing action and low rate of reworking. The low energy facies association includes sandy mud (sM), mud (M) and micritic mud (Mc), characterized by the decantation of the fine sediments below the offshore SWB limit. The results confirm a bottom facies distribution controlled by depth, shelf profile morphology and energy from incident waves. The fragmented rudstone and fragmented grainstone facies are the best-recognized reservoirs with both having high porosity and high permeability.</p></div>","PeriodicalId":18229,"journal":{"name":"Marine Geology","volume":"475 ","pages":"Article 107346"},"PeriodicalIF":2.6,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141540837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magmatism along the Nansha Trough on the southern continental margin of the South China Sea: Recent evidence from along-strike seismic profile 中国南海南部大陆边缘南沙海槽岩浆活动:沿走向地震剖面的最新证据
IF 2.6 3区 地球科学
Marine Geology Pub Date : 2024-06-26 DOI: 10.1016/j.margeo.2024.107344
Chufeng Guo , Yong Tang , Yinxia Fang , Chunyang Wang , Xiaodong Wei , He Li , Peng Chao , Tianyi Yang , Zhibin Song , Jianye Ren , Jiabiao Li
{"title":"Magmatism along the Nansha Trough on the southern continental margin of the South China Sea: Recent evidence from along-strike seismic profile","authors":"Chufeng Guo ,&nbsp;Yong Tang ,&nbsp;Yinxia Fang ,&nbsp;Chunyang Wang ,&nbsp;Xiaodong Wei ,&nbsp;He Li ,&nbsp;Peng Chao ,&nbsp;Tianyi Yang ,&nbsp;Zhibin Song ,&nbsp;Jianye Ren ,&nbsp;Jiabiao Li","doi":"10.1016/j.margeo.2024.107344","DOIUrl":"https://doi.org/10.1016/j.margeo.2024.107344","url":null,"abstract":"<div><p>The Nansha Trough (NT) is part of the southern continental margin boundary of the South China Sea (SCS). It has undergone complex tectonic superposition and evolutionary processes involving the subduction demise of the Proto-SCS and subsequent spreading of the SCS. This study provides the first systematic identification and analysis of igneous bodies and seamounts along the NT, based on a multi-channel seismic profile (NDL1) recently acquired along it. The seamounts within the trough are of magmatic origin and the carbonate build-ups observed at the summits of some seamounts exhibit a substantial thickness. Igneous bodies within the trough are consistently associated with high P-wave anomalies. Furthermore, at the eastern and western sides, there are distinct gravity-magnetic-anomaly patterns. On the eastern side, Yinqing Seamount, Nanle Hill and volcanic mounds show high gravity and strong negative magnetic anomalies. In contrast, on the western side, Jinghong Seamount, Yangshu Hill and intrusive bodies show less pronounced magnetic anomalies. This difference may be related to differences in magmatic periods. Unlike the extensive post-spreading magmatism in the SCS's northern margin and deep basin, the most widespread magmatic activity in the NT occurred at ca. 16 Ma before decreasing during the Miocene. This decrease may be closely related to subduction cessation in the Proto-SCS and the collision between the Nansha Block and Borneo. The identification and analysis of NT igneous bodies and their evolutionary processes help delineate the southern boundary of magmatism at the SCS margin. They also provide crucial information for constraining the magmatic processes of Proto-SCS subduction termination and SCS spreading evolution.</p></div>","PeriodicalId":18229,"journal":{"name":"Marine Geology","volume":"475 ","pages":"Article 107344"},"PeriodicalIF":2.6,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141540836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信