Marine Chemistry最新文献

筛选
英文 中文
A hydrothermal plume on the Southwest Indian Ridge revealed by a multi-proxy approach: Impact on iron and manganese distributions (GEOTRACES GS02) 多代理方法揭示的西南印度洋海脊热液羽流:对铁和锰分布的影响(GEOTRACES GS02)
IF 3 3区 地球科学
Marine Chemistry Pub Date : 2024-05-26 DOI: 10.1016/j.marchem.2024.104401
Corentin Baudet , Eva Bucciarelli , Géraldine Sarthou , Cédric Boulart , Ewan Pelleter , Millie Goddard-Dwyer , Hannah Whitby , Rui Zhang , Ingrid Obernosterer , David Gonzalez-Santana , Morgane Léon , Pieter van Beek , Virginie Sanial , Catherine Jeandel , Frédéric Vivier , Maria-Elena Vorrath , Wen-Hsuan Liao , Yoan Germain , Hélène Planquette
{"title":"A hydrothermal plume on the Southwest Indian Ridge revealed by a multi-proxy approach: Impact on iron and manganese distributions (GEOTRACES GS02)","authors":"Corentin Baudet ,&nbsp;Eva Bucciarelli ,&nbsp;Géraldine Sarthou ,&nbsp;Cédric Boulart ,&nbsp;Ewan Pelleter ,&nbsp;Millie Goddard-Dwyer ,&nbsp;Hannah Whitby ,&nbsp;Rui Zhang ,&nbsp;Ingrid Obernosterer ,&nbsp;David Gonzalez-Santana ,&nbsp;Morgane Léon ,&nbsp;Pieter van Beek ,&nbsp;Virginie Sanial ,&nbsp;Catherine Jeandel ,&nbsp;Frédéric Vivier ,&nbsp;Maria-Elena Vorrath ,&nbsp;Wen-Hsuan Liao ,&nbsp;Yoan Germain ,&nbsp;Hélène Planquette","doi":"10.1016/j.marchem.2024.104401","DOIUrl":"https://doi.org/10.1016/j.marchem.2024.104401","url":null,"abstract":"<div><p>Iron (Fe) and manganese (Mn) are crucial micronutrients that limit oceanic primary productivity in the Southern Ocean. It has been recently suggested that hydrothermal activity may be an important source of oceanic dissolved iron, yet, this contribution is still not fully understood and only one active hydrothermal site has been reported on the Southwest Indian Ridge (SWIR), south of 40°S.</p><p>Using a multi-proxy approach, this study demonstrates the occurrence of hydrothermal venting on the SWIR in the near vicinity of the location 44°51.690 S, 36°10.460 E, which is likely to be a low or moderately high temperature fluid. Indeed, we report high values of dissolved methane to manganese ratios (up to 11.1 ± 1.2 mol mol<sup>−1</sup>), low particulate iron (pFe) and manganese (pMn) concentrations (with maximum values of 0.7 nmol L<sup>−1</sup> and 0.06 nmol L<sup>−1</sup>, respectively) associated with the presence of few oxyhydroxides, as well as high <sup>223</sup>Radium (Ra) and <sup>224</sup>Ra activities near the seafloor. The Fe and Mn data revealed a significant enrichment at depths influenced by hydrothermal circulation on the seafloor, within the Upper Circumpolar Deep Water. Dissolved Fe (dFe) and dissolved Mn (dMn) concentrations were enriched by 3- and 7-fold, respectively, and pFe and pMn by 2- and 1.5-fold, respectively, compared to a reference station located outside the SWIR. They were however lower than concentrations reported so far near high temperature vents, suggesting a weaker influence of this hydrothermal system on deep Fe and Mn reservoirs. We show that a large fraction of the dFe could be stabilized by organic complexation with humic substances (eHS, estimated 27–60% of dFe). High prokaryotic abundance related to the proximity of the hydrothermal vent suggests that other Fe-complexing ligands of biological origin might also stabilize Fe in its dissolved form. Collectively, these measurements integrated within the concept of a “multi-proxy approach”, helped painting a more detailed picture of the complex interactions and processes in this region of the SWIR. Although the system is a source of both dFe and dMn to the deep ocean, the low current velocities and the bathymetry likely limit the fertilization of surface water by dFe and dMn along this section of the SWIR.</p></div>","PeriodicalId":18219,"journal":{"name":"Marine Chemistry","volume":"265 ","pages":"Article 104401"},"PeriodicalIF":3.0,"publicationDate":"2024-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0304420324000525/pdfft?md5=381b461ab0a22124ecaec78631add07d&pid=1-s2.0-S0304420324000525-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141307939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Distribution of dissolved aluminum and dissolved iron in Kongsfjorden: A glacial fjord in the Arctic 康斯峡湾溶解铝和溶解铁的分布:北极的冰川峡湾
IF 3 3区 地球科学
Marine Chemistry Pub Date : 2024-05-14 DOI: 10.1016/j.marchem.2024.104399
Zhan Shen , Ruifeng Zhang , Jingling Ren , Chris Marsay , Zhuoyi Zhu , Ying Wu , Jing Zhang , Seth John
{"title":"Distribution of dissolved aluminum and dissolved iron in Kongsfjorden: A glacial fjord in the Arctic","authors":"Zhan Shen ,&nbsp;Ruifeng Zhang ,&nbsp;Jingling Ren ,&nbsp;Chris Marsay ,&nbsp;Zhuoyi Zhu ,&nbsp;Ying Wu ,&nbsp;Jing Zhang ,&nbsp;Seth John","doi":"10.1016/j.marchem.2024.104399","DOIUrl":"10.1016/j.marchem.2024.104399","url":null,"abstract":"<div><p>Iron plays a pivotal role in marine primary production and the carbon cycle. Glaciers have been recognized as a regional iron source to the ocean. Understanding both the endmember values and the transport processes of glacial iron passing through coastal waters to the ocean is essential to comprehend the fate and flux of iron derived from glaciers to the ocean. Fjords are typical coastal pathways in polar marine environments, connecting glacial meltwater to the open ocean. To better estimate iron transport from glacial meltwater to the ocean, we examined dissolved iron (dFe), dissolved aluminum (dAl), iron stable isotopes (δ<sup>56</sup>Fe), and other biochemical parameters, including dissolved organic carbon, total suspended matter, and chlorophyll <em>a</em> in an Arctic fjord system, Kongsfjorden, Svalbard. In surface Kongsfjorden, low dFe levels averaging 5.23 ± 0.43 nM were detected in the inflow along the southern bank of the outer fjord, while elevated dFe concentrations were observed in both the inner and middle fjord regions (10.74 ± 5.22 nM), as well as in the outflow along the northern bank of the outer fjord (9.37 ± 2.85 nM). The association of dFe distribution with circulation patterns, in addition to the correlation between dFe and salinity, emphasizes that both glacial input and circulation regulate dFe distribution in Kongsfjorden. dFe and dAl endmember values from glacial meltwater were estimated as 82 ± 21 nM and 1089 ± 200.7 nM, respectively. The summer flux of glacier-derived dissolved iron and aluminum in Kongsfjorden were calculated to be 4.6–19 Mg/summer and 29 ± 5.4 Mg/summer, respectively. A short residence time for dFe in the Surface Water of Kongsfjorden was estimated at approximately a few days to a week, while dAl exhibited nearly conservative behavior, suggesting a possible application as a tracer for glacier input. The average δ<sup>56</sup>Fe value in Kongsfjorden surface water was 0.08 ± 0.19‰, and our extrapolated glacial δ<sup>56</sup>Fe input fingerprint ranged from 0.1‰ to 0.3‰ as iron traveled from the glacier towards the ocean. Our results emphasize the transport pattern of glacier-derived iron towards the ocean through Arctic fjord systems.</p></div>","PeriodicalId":18219,"journal":{"name":"Marine Chemistry","volume":"263 ","pages":"Article 104399"},"PeriodicalIF":3.0,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141051647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanisms controlling acidification resilience in the Yangtze River estuary: An index from buffering capacity 控制长江口酸化恢复能力的机制:缓冲能力指数
IF 3 3区 地球科学
Marine Chemistry Pub Date : 2024-05-14 DOI: 10.1016/j.marchem.2024.104400
Qinyu Liu , Junyang Wang , Yanyi Miao , Dewang Li , Bin Wang , Haiyan Jin , Jianfang Chen
{"title":"Mechanisms controlling acidification resilience in the Yangtze River estuary: An index from buffering capacity","authors":"Qinyu Liu ,&nbsp;Junyang Wang ,&nbsp;Yanyi Miao ,&nbsp;Dewang Li ,&nbsp;Bin Wang ,&nbsp;Haiyan Jin ,&nbsp;Jianfang Chen","doi":"10.1016/j.marchem.2024.104400","DOIUrl":"10.1016/j.marchem.2024.104400","url":null,"abstract":"<div><p>Ocean acidification poses a substantial threat to global marine ecosystems, estuaries are more vulnerable to ocean acidification compared to open oceans due to their weaker buffering capacity. This study examined the carbonate parameters off the Yangtze River estuary (YRE) during summer 2019 and investigated seasonal variations in total alkalinity (TA) and dissolved inorganic carbon (DIC) transport in the lower Yangtze River in 2019. Monthly DIC (1566–2164 μmol/kg) and TA (1471–2128 μmol/kg) in the Yangtze River were negatively correlated with water discharge. Buffer factor (β<sub>DIC</sub>) was calculated and used to evaluate the buffering capacity, which ranged from 65 to 256 μmol/kg and increased seaward along the YRE. Conservative mixing models indicated that the estuary had a minimum buffer zone (MBZ) at salinity of 2–9 during the high discharge periods. And the salinity of the MBZ was positively correlated with the riverine DIC:TA ratio. The construction of the Three Gorges Dam has resulted in a decrease in the Yangtze River's DIC:TA ratio, leading to the migration of the estuarine MBZ towards lower salinity regions. The effect of anthropogenic CO<sub>2</sub> invasion on estuarine buffering capacity was opposite to that of dam construction, leading to the migration of the estuarine MBZ towards higher salinity regions. Biological influences on the buffering capacity in the YRE were also quite considerable. Net autotrophy slightly enhanced the buffering capacity of the estuarine surface water, while net heterotrophy significantly weakened the buffering capacity of the estuarine bottom water. Eutrophication could intensify the biological influences on the buffering capacity. Globally, mid-latitude estuaries, such as the YRE, generally exhibit the strongest buffering capacity, while estuaries in Arctic regions tend to have the weakest buffering capacity.</p></div>","PeriodicalId":18219,"journal":{"name":"Marine Chemistry","volume":"263 ","pages":"Article 104400"},"PeriodicalIF":3.0,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141053968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microplastics reduce trace metal bioavailability in Thalassiosira weissflogii by impairing physiological functions 微塑料通过损害生理功能降低微量金属在Thalassiosira weissflogii中的生物利用率
IF 3 3区 地球科学
Marine Chemistry Pub Date : 2024-05-14 DOI: 10.1016/j.marchem.2024.104402
Yanting Du , Qianyan Huang , Shunxing Li , Minggang Cai , Fengjiao Liu , Xuguang Huang , Luxiu Lin , Fengying Zheng , Weijun Chen , Ying Yang
{"title":"Microplastics reduce trace metal bioavailability in Thalassiosira weissflogii by impairing physiological functions","authors":"Yanting Du ,&nbsp;Qianyan Huang ,&nbsp;Shunxing Li ,&nbsp;Minggang Cai ,&nbsp;Fengjiao Liu ,&nbsp;Xuguang Huang ,&nbsp;Luxiu Lin ,&nbsp;Fengying Zheng ,&nbsp;Weijun Chen ,&nbsp;Ying Yang","doi":"10.1016/j.marchem.2024.104402","DOIUrl":"https://doi.org/10.1016/j.marchem.2024.104402","url":null,"abstract":"<div><p>Microplastics (MPs) have been recognized globally as a new environmental pollutant and can be transported in water environments all over the world. Diatoms contribute about 20% of marine primary productivity and play an important role in global carbon sequestration, climate regulation, and the biogeochemical cycling of biogenic elements. Understanding the impact of MPs on the primary biomass productivity of phytoplankton is crucial for assessing ecosystem resilience and maintaining essential ecosystem services. Here the relationships between phytoplankton physiological indicators and trace metal uptake were investigated to delineate how polystyrene microplastics (PS-MPs) affect the primary biomass productivity and alter the dynamics of trace metal sinks in marine ecosystems. We innovatively proposed that the influence of MPs on phytoplankton was not only shading effects on algae and causing oxidative damage, but also limiting the accumulation of trace metals in algae. The accumulation of Mn, Fe and Ni in algae is positively correlated with the content of chlorophyll <em>a</em> (Mn: <em>r</em> = 0.824; Fe: <em>r</em> = 0.697; Ni: <em>r</em> = 0.822), photosynthetic activity (Mn: <em>r</em> = 0.631; Fe: <em>r</em> = 0.467; Ni: <em>r</em> = 0.816) and β-carotene (Mn: <em>r</em> = 0.773; Fe: <em>r</em> = 0.307; Ni: <em>r</em> = 0.786), but negatively correlated with superoxide dismutase activity (Mn: <em>r</em> = −0.714; Fe: <em>r</em> = −0.730; Ni: <em>r</em> = −0.908). This provides a new perspective to reveal the influence mechanisms of MPs on primary biomass and trace metal sinks.</p></div>","PeriodicalId":18219,"journal":{"name":"Marine Chemistry","volume":"263 ","pages":"Article 104402"},"PeriodicalIF":3.0,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140950059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simultaneous determination of picomolar level of dissolved silver with other key trace metals in seawater samples using solid phase extraction and isotope dilution methods 利用固相萃取和同位素稀释法同时测定海水样本中的皮摩尔级溶解银和其他主要痕量金属
IF 3 3区 地球科学
Marine Chemistry Pub Date : 2024-05-01 DOI: 10.1016/j.marchem.2024.104396
Kuo Hong Wong , Keisuke Nishitani , Hajime Obata , Hideki Fukuda , Hiroshi Ogawa , Farah Akmal Idrus , Fatimah A'tirah binti Mohamad , Asami S. Mashio , Hiroshi Hasegawa
{"title":"Simultaneous determination of picomolar level of dissolved silver with other key trace metals in seawater samples using solid phase extraction and isotope dilution methods","authors":"Kuo Hong Wong ,&nbsp;Keisuke Nishitani ,&nbsp;Hajime Obata ,&nbsp;Hideki Fukuda ,&nbsp;Hiroshi Ogawa ,&nbsp;Farah Akmal Idrus ,&nbsp;Fatimah A'tirah binti Mohamad ,&nbsp;Asami S. Mashio ,&nbsp;Hiroshi Hasegawa","doi":"10.1016/j.marchem.2024.104396","DOIUrl":"https://doi.org/10.1016/j.marchem.2024.104396","url":null,"abstract":"<div><p>Simultaneous determination of dissolved silver (dAg) with other key GEOTRACES trace metals is difficult because dAg in seawater tends to form negatively charged chloride species that result in only 75% recovery efficiency with commonly used NOBIAS PA-1 chelating resins. In this study, we developed a method using solid phase extraction coupled with isotope dilution that enables full quantification (97.9 ± 2.1%) of dAg along with other major trace metals including cadmium (Cd), copper (Cu), manganese (Mn), nickel (Ni), and lead (Pb) (recovery efficiency = 100% to 102%) in seawater samples. Seawater samples were first spiked with Ag-109 and allowed to reach isotopic equilibrium before extraction using NOBIAS PA-1 chelating resin. Then, dAg isotope ratios (Ag-109/Ag-107) before and after solid phase extraction were determined and used to quantify dAg. Determination of dAg with dissolved Cd, Cu. Mn, Ni, and Pb in reference seawater material CASS-6 resulted in deviations of between 1.0% and 8.8% from the consensus values, which are well within the standard error of measurement. We then successfully determined the concentrations of dissolved Cd (0.05–0.2 nM), Cu (0.5–13 nM), Mn (10–140 nM), Ni (2–12 nM), Pb (5–110 nM), and Ag (10–40 pM) in Otsuchi Bay, Japan and its surrounding rivers. Evaluation of the behavior of dAg under a salinity gradient using estuarine samples collected from Samunsam River, Malaysia shows increasing dAg concentration with salinity (R<sup>2</sup> = 0.68), which suggests release of sedimental Ag under high ambient chloride concentrations. Our new method enables rapid and simultaneous measurements of dAg with other key GEOTRACES trace metals in a single analysis, which is expected to expedite analysis and increase availability of oceanic dAg data globally.</p></div>","PeriodicalId":18219,"journal":{"name":"Marine Chemistry","volume":"262 ","pages":"Article 104396"},"PeriodicalIF":3.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140893619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterizing the stable oxygen isotopic composition of the southeast Indian Ocean 确定东南印度洋稳定氧同位素组成的特征
IF 3 3区 地球科学
Marine Chemistry Pub Date : 2024-05-01 DOI: 10.1016/j.marchem.2024.104397
Ryan H. Glaubke , Amy J. Wagner , Elisabeth L. Sikes
{"title":"Characterizing the stable oxygen isotopic composition of the southeast Indian Ocean","authors":"Ryan H. Glaubke ,&nbsp;Amy J. Wagner ,&nbsp;Elisabeth L. Sikes","doi":"10.1016/j.marchem.2024.104397","DOIUrl":"https://doi.org/10.1016/j.marchem.2024.104397","url":null,"abstract":"<div><p>New seawater stable oxygen isotope (δ<sup>18</sup>O) samples were collected from the southeast Indian Ocean as part of the Coring to Reconstruct Ocean Circulation and Carbon dioxide Across 2 Seas (CROCCA-2S) expedition in November – December of 2018. These data fill a gap in the δ<sup>18</sup>O sampling coverage of the southern Indian basin, providing new insights into the hydrologic and oceanographic processes influencing the δ<sup>18</sup>O distribution of the region and its relationship to salinity in the upper ocean. Our surface ocean data (&lt;100 m)—in combination with decades of observations from the broader south Indian Ocean—show distinct δ<sup>18</sup>O – salinity characteristics on either side of ∼85°E. The balance between evaporation and precipitation yields a strong, robust δ<sup>18</sup>O – salinity relationship west of 85°E (δ<sup>18</sup>O = 0.50(±0.01) * S – 17.2(±0.22)). However, within the mesoscale eddy field initiated by the Leeuwin Current further east (∼85–120°E), our observations fall along a mixing line between the southwest Indian Ocean and data collected from the Australian coastal margin, illustrating for the first time how the unique eastern boundary system of the south Indian Ocean drives regional-scale variability in the δ<sup>18</sup>O – salinity relationship of the surface ocean. A comparison between our observations in the shallow subsurface (100–1000 m) and those from neighboring surveys reinforces this upper ocean connection across the Indo-Australian basin. Antarctic Intermediate Water from the Indian Ocean can be isotopically distinguished from the more regional Tasman Intermediate Water occupying the South Australian Bight, suggesting exchange between the two regions is most prevalent at surface and mode water depths. In deeper waters (&gt; ∼1500 m), we observe a notable 0.87‰ spread in δ<sup>18</sup>O. This variability may represent interactions between distinct deep water masses in the region, although additional data are needed to confirm. Overall, our data provide a new look at the hydrography and isotopic chemistry of the southeast Indian Ocean, emphasizing the impact of the region's mesoscale eddy field and its interconnectivity with neighboring basins.</p></div>","PeriodicalId":18219,"journal":{"name":"Marine Chemistry","volume":"262 ","pages":"Article 104397"},"PeriodicalIF":3.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140880015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of polysulfides (Sx2−) in seawater euxinic conditions by electroanalytical methods 利用电分析方法确定海水优氧条件下多硫化物 (Sx2-) 的特征
IF 3 3区 地球科学
Marine Chemistry Pub Date : 2024-05-01 DOI: 10.1016/j.marchem.2024.104398
Sarah Mateša , Marija Marguš , Suzana Šegota , Irena Ciglenečki
{"title":"Characterization of polysulfides (Sx2−) in seawater euxinic conditions by electroanalytical methods","authors":"Sarah Mateša ,&nbsp;Marija Marguš ,&nbsp;Suzana Šegota ,&nbsp;Irena Ciglenečki","doi":"10.1016/j.marchem.2024.104398","DOIUrl":"https://doi.org/10.1016/j.marchem.2024.104398","url":null,"abstract":"<div><p>Polysulfides (S<sub>x</sub><sup>2−</sup>) are important reduced sulfur species (RSS) that play a role in numerous environmental processes. A sound analytical method for the measurement of S<sub>x</sub><sup>2−</sup> in euxinic waters is lacking. In this work, differential pulse voltammetry (DPV) at the Hg electrode was used to measure the presence of S<sub>x</sub><sup>2−</sup> in a model seawater solution and an euxinic marine lake (Rogoznica Lake - RL Croatia), in which the concentration of RSS, mainly HS<sup>−</sup>, varies between 100 and 4000 μM. In the DPV, an adsorption phenomenon associated with S<sub>x</sub><sup>2−</sup> reduction on Hg produces a characteristic current minimum at −1.0 V (vs. Ag/AgCl), the magnitude of which is proportional to the concentration of polysulfidic sulfur.</p><p>The DPV current minima were recorded in the model solution K<sub>2</sub>S<sub>x</sub> NaCl/NaHCO<sub>3</sub> (pH ∼ 8.2) in a concentration range from 10 to 100 μM of polysulfidic sulfur. Total RSS was measured by cyclic voltammetry, and sampled DC voltammetry showed the ratio between HS<sup>−</sup> and S<sup>0</sup> within the S<sub>x</sub><sup>2−</sup>. Using the same methodology, the presence of S<sub>x</sub><sup>2−</sup> below the chemocline enriched by photoptrophic sulfur bacteria was measured in the euxinic layer of RL at concentrations of up to 70 μM of polysulfidic sulfur. The results suggest that euxinic RL samples can be considered as polydisperse solutions of S<sup>0</sup> or of S-rich compounds that can change their physicochemical properties and speciation during sample manipulation. These changes can be detected by electrochemistry. Atomic force microscopy proved the release of bacterial cellular S<sup>0</sup> during the acidification and purging step in the electrochemical measurements, which contributed to the voltammetric RSS signal.</p></div>","PeriodicalId":18219,"journal":{"name":"Marine Chemistry","volume":"262 ","pages":"Article 104398"},"PeriodicalIF":3.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140950573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microbial interactions with microplastics: Insights into the plastic carbon cycle in the ocean 微生物与微塑料的相互作用:洞察海洋中的塑料碳循环
IF 3 3区 地球科学
Marine Chemistry Pub Date : 2024-05-01 DOI: 10.1016/j.marchem.2024.104395
Kai Ziervogel , Sierra Kehoe , Astrid Zapata De Jesus , Alireza Saidi-Mehrabad , Miriam Robertson , Ariana Patterson , Aron Stubbins
{"title":"Microbial interactions with microplastics: Insights into the plastic carbon cycle in the ocean","authors":"Kai Ziervogel ,&nbsp;Sierra Kehoe ,&nbsp;Astrid Zapata De Jesus ,&nbsp;Alireza Saidi-Mehrabad ,&nbsp;Miriam Robertson ,&nbsp;Ariana Patterson ,&nbsp;Aron Stubbins","doi":"10.1016/j.marchem.2024.104395","DOIUrl":"10.1016/j.marchem.2024.104395","url":null,"abstract":"<div><p>The fate of microplastics (MPs) in the ocean is mostly driven by (i) photo-oxidation to smaller particles and dissolved constituents, which fuel the dissolved organic carbon pool (plastic-derived DOC, pDOC), and (ii) interactions with organic matter forming sinking aggregates (marine plastic snow). Two separate laboratory experiments were conducted to investigate the two pathways of MPs. In the first experiment, we measured potential rates of microbial pDOC utilization in bottle incubations over 15 days with microbial assemblages from coastal and offshore waters. Microbial utilization of pDOC was more efficient in the coastal (72% bioreactive pDOC) compared with the offshore experiment (32% bioreactive pDOC) 15 days. Changes in bacterial cell abundance and extracellular enzyme activities (glucosidase, peptidase, esterases) indicated that a fraction of pDOC was repackaged into microbial exopolymeric substances (EPS), stimulating growth of known EPS degrading bacteria within the phyla Verrucomicrobiota and Planctomycetota. Microbial EPS likely also played a key role in our second experiment that showed the formation of marine plastic snow in roller tanks with cultured cells of <em>Emiliana huxleyi</em> but not with cells of an <em>Isocrysis</em> sp. culture. Average sinking velocities of marine plastic snow were a factor of 1.2 lower compared with marine snow without MPs. Both aggregate types showed reduced sinking velocities in a density stratified sinking column. Our results from the two experiments on (i) microbial utilization of pDOC and (ii) the formation and sinking of marine plastic snow indicate potential effects of plastic-derived compounds on microbial elemental cycles (i.e., pDOC repackaged into EPS) with consequences for the efficiency of the biological carbon pump (i.e., marine plastic snow reduces carbon export) and the fate of plastic-derived compounds in the ocean.</p></div>","PeriodicalId":18219,"journal":{"name":"Marine Chemistry","volume":"262 ","pages":"Article 104395"},"PeriodicalIF":3.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140787065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biogeochemistry of dissolved trace metals in the Bay of Bengal 孟加拉湾溶解痕量金属的生物地球化学
IF 3 3区 地球科学
Marine Chemistry Pub Date : 2024-05-01 DOI: 10.1016/j.marchem.2024.104394
Idha Yulia Ikhsani , Kuo Hong Wong , Taejin Kim , Asami S. Mashio , Kazuhiro Norisuye , Hajime Obata
{"title":"Biogeochemistry of dissolved trace metals in the Bay of Bengal","authors":"Idha Yulia Ikhsani ,&nbsp;Kuo Hong Wong ,&nbsp;Taejin Kim ,&nbsp;Asami S. Mashio ,&nbsp;Kazuhiro Norisuye ,&nbsp;Hajime Obata","doi":"10.1016/j.marchem.2024.104394","DOIUrl":"10.1016/j.marchem.2024.104394","url":null,"abstract":"<div><p>The pronounced seasonal variation over the Bay of Bengal affects trace metals concentration and distribution. Trace metals distribution in the Bay of Bengal has been best characterized during spring and fall intermonsoon, while limited studies were conducted during the southwest monsoon. This study reports the full-depth profiles of trace metals, including dissolved iron, manganese, lead, cadmium, copper, and zinc (Fe, Mn, Pb, Cd, Cu, and Zn) in the Bay of Bengal (BoB) during southwest monsoon, from July to August 2013. At coastal and ocean scales, transect observations covering the entire water depth provided a comprehensive picture of the circulation and biogeochemical cycles of these elements in seawater during the southwest monsoon. Water samples were obtained from one station in the northeastern Indian Ocean (NR-1) and from three shallow coastal stations with maximum depths &lt;60 m (BA-1, BA-3, and BA-5), as well as from three offshore stations with maximum depths exceeding 2000 m (MY-7, MY-9, and MY-11). In the surface layer (5 m depth), the trace metal concentrations at the shallow near-coastal station BA-5 were higher than those at the ocean station NR-1. Surface trace metal concentrations in offshore regions encompassing stations MY-11, MY-9, and MY-7 were relatively higher than those reported for other seasons in a similar salinity region, indicating seasonal variation associated with freshwater intrusion and coastal-derived input. Below the mixed layer depth, the trace metal/phosphate (P) ratio was higher than that previously reported in the eastern Indian Ocean, suggesting an input from continental margins and mildly reducing sediments, particularly for Fe, Mn, and Cu. Moreover, at intermediate depths (190–800 m), where the North Indian Central Water (NICW) is the main water mass, the Cd/P ratio (0.55 ± 0.11 nmol/μmol) deviated from the global trend (∼0.3 nmol/μmol) owing to oxygen-deficient conditions. Intriguingly, at some stations, specifically MY-9 and MY-7, the intermediate dFe concentrations were relatively higher than those at station NR-1 at the same depth. Continental margin sediment, water mass movement, and ventilation may control the transport of Fe from locations with high Fe concentrations, including near the continental shelf (station MY-11 in this study) and the Andaman Sea.</p></div>","PeriodicalId":18219,"journal":{"name":"Marine Chemistry","volume":"262 ","pages":"Article 104394"},"PeriodicalIF":3.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140792310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of sorption behavior of 137Cs in a river–sea system boundary area after the Fukushima Dai-ichi nuclear power plant accident 福岛第一核电站事故后河海系统边界地区 137Cs 的吸附行为调查
IF 3 3区 地球科学
Marine Chemistry Pub Date : 2024-04-09 DOI: 10.1016/j.marchem.2024.104384
Hyoe Takata , Yoshifumi Wakiyama , Toshihiro Wada , Shigekazu Hirao , Tatsuo Aono , Takahiro Nakanishi , Toshiharu Misonou , Takehiko Shiribiki , Michio Aoyama
{"title":"Investigation of sorption behavior of 137Cs in a river–sea system boundary area after the Fukushima Dai-ichi nuclear power plant accident","authors":"Hyoe Takata ,&nbsp;Yoshifumi Wakiyama ,&nbsp;Toshihiro Wada ,&nbsp;Shigekazu Hirao ,&nbsp;Tatsuo Aono ,&nbsp;Takahiro Nakanishi ,&nbsp;Toshiharu Misonou ,&nbsp;Takehiko Shiribiki ,&nbsp;Michio Aoyama","doi":"10.1016/j.marchem.2024.104384","DOIUrl":"https://doi.org/10.1016/j.marchem.2024.104384","url":null,"abstract":"<div><p>The radiocesium (<sup>137</sup>Cs) distribution between dissolved and particulate phases was examined in river water and coastal seawater as a function of the <sup>137</sup>Cs sorption behavior on suspended particles. Dissolved <sup>137</sup>Cs activity concentrations in the Tomioka River (salinity &lt;0.1), about 10 km south of Fukushima Dai-ichi Nuclear Power Plant, and in coastal seawater at Tomioka fishery port (salinity &gt;30), Fukushima Prefecture, from June 2019 to October 2021 were 3.6–20 Bq/m<sup>3</sup> (geometric mean 11 Bq/m<sup>3</sup>) and 2.4–86 Bq/m<sup>3</sup> (13 Bq/m<sup>3</sup>), respectively. Although the suspended particle concentration was lower in the river than in seawater, the mean <sup>137</sup>Cs activity on suspended particles was 11,000 Bq/kg-dry in the river versus 3200 Bq/kg-dry in seawater. Proportions of ion-exchangeable, organically bound, and refractory fractions of <sup>137</sup>Cs on suspended particles were determined by sequential extraction. The ion-exchangeable fraction accounted for 0.3–2.0% (average: 1.2%) and 0.4–1.3% (0.8%) at the river and port sites, respectively. The organically bound fraction accounted for 0.3–4.8% (1.8%) and 0.1–5.5% (2.1%) at the river and port sites, respectively. In both areas, the refractory fraction accounted for &gt;90% of <sup>137</sup>Cs. Therefore, the small labile <sup>137</sup>Cs fraction on suspended particles in coastal seawater indicates that the mobility of <sup>137</sup>Cs to marine biota is quite low.</p></div><div><h3>Synopsis</h3><p>This study is the first to examine radiocesium sorption forms on suspended particles in coastal seawater near the Fukushima Dai-ichi Nuclear Power Plant. It suggests immobility of <sup>137</sup>Cs in suspended particles being incorporated to marine biota.</p></div>","PeriodicalId":18219,"journal":{"name":"Marine Chemistry","volume":"262 ","pages":"Article 104384"},"PeriodicalIF":3.0,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140619089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信