Magnetochemistry最新文献

筛选
英文 中文
New Branched Iron(III) Complexes in Fluorescent Environment Created by Carbazole Moieties: Synthesis and Structure, Static Magnetic and Resonance Properties 咔唑分子在荧光环境中产生的新支链铁(III)配合物:合成与结构、静态磁性和共振特性
IF 2.7 4区 化学
Magnetochemistry Pub Date : 2024-05-21 DOI: 10.3390/magnetochemistry10060038
D. Starichenko, V. Vorobeva, M. Gruzdev, U. Chervonova, Nataliya G. Bichan, Aleksander V. Korolev, Ivan V. Yatsyk
{"title":"New Branched Iron(III) Complexes in Fluorescent Environment Created by Carbazole Moieties: Synthesis and Structure, Static Magnetic and Resonance Properties","authors":"D. Starichenko, V. Vorobeva, M. Gruzdev, U. Chervonova, Nataliya G. Bichan, Aleksander V. Korolev, Ivan V. Yatsyk","doi":"10.3390/magnetochemistry10060038","DOIUrl":"https://doi.org/10.3390/magnetochemistry10060038","url":null,"abstract":"The branched complexes of Schiff bases with various iron(III) salts, named G2-[L2Fe]+A− (A− is NO3−, Cl−, PF6−), were synthesized using the condensation reaction between carbazole derivatives of salicylic aldehyde and N’-ethylethylenediamine and characterized by various spectroscopic methods (GPC, IR, 1H NMR, UV/Vis). The studies revealed that the coordination of the two ligand molecules to metal occurs through the nitrogen ions and oxygen atom of azomethine to form a homoleptic system. All the synthesized coordination compounds were examined for their thermal, optical, and magnetic features. Static magnetic measurements showed that only G2-[L2Fe]Cl was in a single-phase HS state, whereas the Fe(III) ions of G2-[L2Fe]NO3 and G2-[L2Fe]PF6 at room temperatures were in mixed low-spin (LS, S = 1/2) and high-spin (HS, S = 5/2) states: 58.9% LS/41.1% HS for G2-[L2Fe]NO3, 56.1% LS and 43.9% HS for G2-[L2Fe]PF6. All G2-[L2Fe]+A− complexes demonstrate antiferromagnetic exchange interactions between neighboring Fe(III) ions. The ground spin state at 2.0 K revealed a Brillouin contribution from non-interacting LS ions and a proportion of the HS Fe(III) ions not participating in AFM interactions: 57%, 18%, and 16% for G2-[L2Fe]Cl, G2-[L2Fe]NO3 and G2-[L2Fe]PF6, respectively. EPR measurements confirmed the presence of magnetically active HS and LS states of Fe(III) ions and made it possible to distinguish two HS types-with strong low-symmetry (I-type) and weak, distorted octahedral environments (II-type). It was shown that G2-[L2Fe]+A− complexes are magnetically inhomogeneous and consist of two magnetic sub-lattices: AFM-correlated chains in layers from the I-type HS Fe(III) centers and dynamic short-range AFM ordered LS/II-type HS Fe(III) centers in the paramagnetic phase located between the layers.","PeriodicalId":18194,"journal":{"name":"Magnetochemistry","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141116539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparison of Current Induced Domain Wall Motion Driven by Spin Transfer Torque and by Spin Orbit Torque in Ferrimagnetic GdFeCo Wires 比较铁磁性钆钴合金丝中由自旋转移力矩和自旋轨道力矩驱动的电流诱导的畴壁运动
IF 2.7 4区 化学
Magnetochemistry Pub Date : 2024-05-19 DOI: 10.3390/magnetochemistry10050036
P. V. Thach, Satoshi Sumi, Kenji Tanabe, Hiroyuki Awano
{"title":"Comparison of Current Induced Domain Wall Motion Driven by Spin Transfer Torque and by Spin Orbit Torque in Ferrimagnetic GdFeCo Wires","authors":"P. V. Thach, Satoshi Sumi, Kenji Tanabe, Hiroyuki Awano","doi":"10.3390/magnetochemistry10050036","DOIUrl":"https://doi.org/10.3390/magnetochemistry10050036","url":null,"abstract":"Current-induced domain wall motion (CIDWM) in magnetic wires can be driven by spin transfer torque (STT) originating from transferring angular momentums of spin-polarized conducting electrons to the magnetic DW and can be driven by spin orbit torque (SOT) originating from the spin Hall effect (SHE) in a heavy metal layer and Dzyaloshinsky Moriya (DMI) generated at an interface between a heavy metal layer and a magnetic layer. In this work, we carried out a comparative study of CIDWM driven by STT and by SOT in ferrimagnetic GdFeCo wires with magnetic perpendicular anisotropy based on structures of SiN (10 nm)/GdFeCo (8 nm)/SiN (10 nm) and Pt (5 nm)/GdFeCo (8 nm)/SiN (10 nm). We found that CIDWM driven by SOT exhibited a much lower critical current density (JC), and much higher DW mobility (µDW). Our work might be useful for the realization and the development of low-power and high-speed memory devices.","PeriodicalId":18194,"journal":{"name":"Magnetochemistry","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141123750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel Hybrid Ferromagnetic Fe–Co/Nanodiamond Nanostructures: Influence of Carbon on Their Structural and Magnetic Properties 新型铁磁性铁-钴/纳米金刚石杂化纳米结构:碳对其结构和磁性能的影响
IF 2.7 4区 化学
Magnetochemistry Pub Date : 2024-05-17 DOI: 10.3390/magnetochemistry10050035
P. Ziogas, A. Bourlinos, P. Chatzopoulou, G. Dimitrakopulos, A. Markou, A. Douvalis
{"title":"Novel Hybrid Ferromagnetic Fe–Co/Nanodiamond Nanostructures: Influence of Carbon on Their Structural and Magnetic Properties","authors":"P. Ziogas, A. Bourlinos, P. Chatzopoulou, G. Dimitrakopulos, A. Markou, A. Douvalis","doi":"10.3390/magnetochemistry10050035","DOIUrl":"https://doi.org/10.3390/magnetochemistry10050035","url":null,"abstract":"This study introduces a novel magnetic nanohybrid material consisting of ferromagnetic (FM) bcc Fe–Co nanoparticles (NPs) grown on nanodiamond (ND) nanotemplates. A combination of wet chemistry, which produces chemical precursors and their subsequent thermal treatment under vacuum, was utilized for its development. The characterization and study of the prepared samples performed with a range of specialized experimental techniques reveal that thermal treatment of the as-prepared hybrid precursors under a range of annealing conditions leads to the development of Co-rich Fe–Co alloy NPs, with average sizes in the range of 6–10 nm, that exhibit uniform distribution on the surfaces of the ND nanotemplates and demonstrate FM behavior throughout a temperature range from 2 K to 400 K, with maximum magnetization values ranging between 18.9 and 21.1 emu/g and coercivities ranging between 112 and 881 Oe. Moreover, 57Fe Mössbauer spectroscopy reveals that apart from the predominant bcc FM Fe–Co phase, iron atoms also participate in the formation of a secondary martensitic-type Fe–Co phase. The emergence of this distinctive phase is attributed to the diffusion of carbon atoms within the Fe–Co lattices during their formation at elevated temperatures. The source of these carbon atoms is related to the unique morphological properties of the ND growth matrices, which facilitate surface sp2 formations. Apart from their diffusion within the Fe–Co NP lattice, the carbon atoms also reconstruct layered graphitic-type nanostructures enveloping the metallic alloy NPs. These non-typical nanohybrid materials, reported here for the first time in the literature, hold significant potential for use in applications related, but not limited to, biomedicine, biopharmaceutics, catalysis, and other various contemporary technological fields.","PeriodicalId":18194,"journal":{"name":"Magnetochemistry","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140963242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tuning Structure and Properties of a Ferromagnetic Organic Semiconductor via a Magnetic Field-Modified Reduction Process 通过磁场修饰还原工艺调整铁磁性有机半导体的结构和特性
IF 2.7 4区 化学
Magnetochemistry Pub Date : 2024-05-15 DOI: 10.3390/magnetochemistry10050034
Han Zhou, Zaitian Cheng, Zhiqiang Ai, Xinyao Li, Lin Hu, Fapei Zhang
{"title":"Tuning Structure and Properties of a Ferromagnetic Organic Semiconductor via a Magnetic Field-Modified Reduction Process","authors":"Han Zhou, Zaitian Cheng, Zhiqiang Ai, Xinyao Li, Lin Hu, Fapei Zhang","doi":"10.3390/magnetochemistry10050034","DOIUrl":"https://doi.org/10.3390/magnetochemistry10050034","url":null,"abstract":"The development of novel synthesis and assembly strategies is critical to achieving a ferromagnetic organic semiconductor with high Curie temperature. In this study, we report a high magnetic field (HMF)-modified solvothermal approach for the reduction in neutral perylene diimide (PDI) into the dianion species to prepare the PDI magnets comprising radical anions after subsequent oxidation processes. The PDI materials, assembled from the dianion solution by an HMF-modified reduction, exhibit a smaller crystallite size and an enlarged distance of the π-π stacking in the PDI aggregates. Furthermore, the PDI magnets obtained from the process under a 9T field reveal weakened ferromagnetism and the rapid degradation of electrical conductivity compared to those prepared without a magnetic field. Based on spectral and structural characterizations, such performance deterioration originates from the enhanced instability of the radical anions exposed to air, as well as the decreased crystallinity for the radical PDIs synthesized from the HMF-modified reduction process. This work demonstrates that magnetic fields offer an effective way in the material synthesis process to manipulate the structure and magnetic properties of the radical-based organic magnets.","PeriodicalId":18194,"journal":{"name":"Magnetochemistry","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140975242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Relationship between Structure and Zero-Field Splitting of Octahedral Nickel(II) Complexes with a Low-Symmetric Tetradentate Ligand 具有低对称性四价配体的八面体镍(II)配合物的结构与零场分裂之间的关系
IF 2.7 4区 化学
Magnetochemistry Pub Date : 2024-04-24 DOI: 10.3390/magnetochemistry10050032
H. Sakiyama, Rin Kimura, Haruto Oomiya, R. Mitsuhashi, Sho Fujii, K. Kanaizuka, M. Muddassir, Yuga Tamaki, E. Asato, Makoto Handa
{"title":"Relationship between Structure and Zero-Field Splitting of Octahedral Nickel(II) Complexes with a Low-Symmetric Tetradentate Ligand","authors":"H. Sakiyama, Rin Kimura, Haruto Oomiya, R. Mitsuhashi, Sho Fujii, K. Kanaizuka, M. Muddassir, Yuga Tamaki, E. Asato, Makoto Handa","doi":"10.3390/magnetochemistry10050032","DOIUrl":"https://doi.org/10.3390/magnetochemistry10050032","url":null,"abstract":"Octahedral nickel(II) complexes are among the simplest systems that exhibit zero-field splitting by having two unpaired electrons. For the purpose of clarifying the relationship between structure and zero-field splitting in a low-symmetric system, distorted octahedral nickel(II) complexes were prepared with a tetradentate ligand, 2-[bis(2-methoxyethyl)aminomethyl]-4-nitrophenolate(1−) [(onp)−]. The complex [Ni(onp)(dmso)(H2O)][BPh4]·2dmso (1) (dmso = dimethyl sulfoxide) was characterized as a bulk sample by IR, elemental analysis, mass spectrometry, electronic spectra, and magnetic properties. The powder electronic spectral data were analyzed based on the angular overlap model to conclude that the spectra were typical of D4-symmetric octahedral coordination geometry with a weak axial ligand field. Simultaneous analysis of the temperature-dependent susceptibility and field-dependent magnetization data yielded the positive axial zero-field splitting parameter D (H = guβSuHu + D[Sz2 − S(S + 1)/3]), which was consistent with the weak axial ligand field. Single-crystal X-ray analysis revealed the crystal structures of [Ni(onp)(dmso)(H2O)][BPh4]·dmso (2) and [Ni(onp)(dmf)2][BPh4] (3) (dmf = N,N-dimethylformamide). The density functional theory (DFT) computations based on the crystal structures indicated the D4-symmetric octahedral coordination geometries with weak axial ligand fields. This study also showed the importance of considering g-anisotropy in magnetic analysis, even if g-anisotropy is small.","PeriodicalId":18194,"journal":{"name":"Magnetochemistry","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140660337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Novel Magnetic Nano-Adsorbent Functionalized with Green Tea Extract and Magnesium Oxide to Remove Methylene Blue from Aqueous Solutions: Synthesis, Characterization, and Adsorption Behavior 用绿茶提取物和氧化镁功能化的新型磁性纳米吸附剂去除水溶液中的亚甲基蓝:合成、表征和吸附行为
IF 2.7 4区 化学
Magnetochemistry Pub Date : 2024-04-24 DOI: 10.3390/magnetochemistry10050031
Wenchao Lin, Yaoyao Huang, Shuang Liu, Wei Ding, H. Li, Huaili Zheng
{"title":"A Novel Magnetic Nano-Adsorbent Functionalized with Green Tea Extract and Magnesium Oxide to Remove Methylene Blue from Aqueous Solutions: Synthesis, Characterization, and Adsorption Behavior","authors":"Wenchao Lin, Yaoyao Huang, Shuang Liu, Wei Ding, H. Li, Huaili Zheng","doi":"10.3390/magnetochemistry10050031","DOIUrl":"https://doi.org/10.3390/magnetochemistry10050031","url":null,"abstract":"In this study, a novel green tea/Mg-functionalized magnetic nano-adsorbent, denoted as GTE-MgO-Fe3O4 NPs, was developed and applied to the extraction of Methylene Blue (MB) from water-based solutions. The GTE-MgO-Fe3O4 NPs were synthesized by incorporating green tea extracts (GTE) and Mg species onto the surface of Fe3O4 nanoparticles using a hydrothermal method. Characterization analyses corroborated the successful functionalization of the Fe3O4 surface with GTE and Mg species, resulting in a superparamagnetic adsorbent equipped with abundant surface functional groups, which promoted MB adsorption and facilitated magnetic separation. Batch experiments revealed that different operating parameters had an impact on the adsorption behavior, such as adsorbent dosage, pH, coexisting ions, contact time, the initial MB concentration, and temperature. The investigations of adsorption kinetics and isotherms emphasized that the MB adsorption onto GTE-MgO-Fe3O4 NPs was an exothermic process dominated by chemisorption. The experimental adsorption capacity of GTE-MgO-Fe3O4 NPs for MB surpassed 174.93 mg g−1, markedly superior to the performance of numerous other adsorbents. Ultimately, the utilized GTE-MgO-Fe3O4 NPs could be effectively regenerated through acid pickling, retaining over 76% of its original adsorption capacity after six adsorption–desorption cycles, which suggested that GTE-MgO-Fe3O4 NPs was a suitable adsorbent for eliminating MB from effluent.","PeriodicalId":18194,"journal":{"name":"Magnetochemistry","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140664785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Piezoresistive Performance of CuMnNi Alloy Thin-Film Pressure Sensors Prepared by Magnetron Sputtering 磁控溅射法制备的铜锰镍合金薄膜压力传感器的压阻性能
IF 2.7 4区 化学
Magnetochemistry Pub Date : 2024-04-23 DOI: 10.3390/magnetochemistry10050030
Zhengtao Wu, Xiaotao He, Yu Cao, Qimin Wang, Yisong Lin, Liangliang Lin, Chao Liu
{"title":"The Piezoresistive Performance of CuMnNi Alloy Thin-Film Pressure Sensors Prepared by Magnetron Sputtering","authors":"Zhengtao Wu, Xiaotao He, Yu Cao, Qimin Wang, Yisong Lin, Liangliang Lin, Chao Liu","doi":"10.3390/magnetochemistry10050030","DOIUrl":"https://doi.org/10.3390/magnetochemistry10050030","url":null,"abstract":"Effects of varying Mn and Ni concentrations on the structure and piezoresistive properties of CuMnNi films deposited by magnetron sputtering with a segmented target were investigated. An increase in the Ni content refines the CuNi film grains, inducing an increase in defects such as internal micropores and a decrease in film density. At the same time, the positive piezoresistive coefficient of the film changes to negative. When 17.5 at.% Ni was added, the negative piezoresistive coefficient of the CuNi film was −2.0 × 10−4 GPa−1. The doping of Ni has a weakening effect on the positive piezoresistive effect of the film. Adding Mn into Cu refines the film grains while increasing the film density. The surface roughness of the film decreases with the increase in Mn content. When the Mn content was 16.7 at.%, the piezoresistive coefficient reached the largest recorded value of 23.81 × 10−4 GPa−1, and the film exhibited excellent repeatability in multiple piezoresistive tests. After the CuMn film with 16.7 at.% Mn was annealed at 400 °C for 2 h, the film grains grew slightly and the film residual stress decreased. The optimization of the film structure can reduce the scattering of electrons during transportation. The piezoresistive coefficient of the film was further improved to 35.78 × 10−4 GPa−1.","PeriodicalId":18194,"journal":{"name":"Magnetochemistry","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140667805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical Analysis of the Influence of a Magnetic Field on the Group Dynamics of Iron-Doped Carbon Nanotori 磁场对掺铁碳纳米管群动力学影响的数值分析
IF 2.7 4区 化学
Magnetochemistry Pub Date : 2024-04-18 DOI: 10.3390/magnetochemistry10040029
V. Borodin, A. Bubenchikov, M. A. Bubenchikov, Dmitry S. Kaparulin, Vyacheslav A. Ovchinnikov
{"title":"Numerical Analysis of the Influence of a Magnetic Field on the Group Dynamics of Iron-Doped Carbon Nanotori","authors":"V. Borodin, A. Bubenchikov, M. A. Bubenchikov, Dmitry S. Kaparulin, Vyacheslav A. Ovchinnikov","doi":"10.3390/magnetochemistry10040029","DOIUrl":"https://doi.org/10.3390/magnetochemistry10040029","url":null,"abstract":"Columnar phases consisting of a group of carbon toroidal molecules (C120, C192, C252, C288) are studied numerically. Each nanotorus was previously doped with an iron atom. This made it possible to use an external magnetic field as a tool for influencing both an individual molecule and a linear fragment of the columnar phase. A high-precision scheme for calculating the dynamics of large molecules with a rigid frame structure is proposed to solve the problem. The group dynamics of nanotori clusters under the influence of an external magnetic field has been studied using classical molecular dynamics methods. The influence of the molecular cluster size, temperature, magnetic moment of the molecule, and magnetic field direction on the collective behavior of iron-doped toroidal molecules with different contents of carbon atoms is analyzed. Molecular dynamics calculations showed that systems of nanotori doped with a single iron atom retain a columnar structure both in the absence and in the presence of an external magnetic field. The columnar fragment behaves as a stable linear association of molecules even at sufficiently high values of magnetic induction, performing a coordinated collective orbital rotation around a common center of mass on a nanosecond time scale.","PeriodicalId":18194,"journal":{"name":"Magnetochemistry","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140687541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent Advances in Magnetically Actuated Droplet Manipulation for Biomedical Applications 用于生物医学应用的磁驱动液滴操纵技术的最新进展
IF 2.7 4区 化学
Magnetochemistry Pub Date : 2024-04-16 DOI: 10.3390/magnetochemistry10040028
Jiaqi Li, Kaixin Su, Hai-Yun Liu, Yuan Zou
{"title":"Recent Advances in Magnetically Actuated Droplet Manipulation for Biomedical Applications","authors":"Jiaqi Li, Kaixin Su, Hai-Yun Liu, Yuan Zou","doi":"10.3390/magnetochemistry10040028","DOIUrl":"https://doi.org/10.3390/magnetochemistry10040028","url":null,"abstract":"The manipulation of droplets plays a vital role in biomedicine, chemistry, and hydromechanics, especially in microfluidics. Magnetic droplet manipulation has emerged as a prominent and advanced technique in comparison to other modes such as dielectric infiltration, optical radiation, and surface acoustic waves. Its notable progress is attributed to several advantages, including excellent biocompatibility, remote and non-contact control, and instantaneous response. This review provides a comprehensive overview of recent developments in magnetic droplet manipulation and its applications within the biomedical field. Firstly, the discussion involves an examination of the distinctive features associated with droplet manipulation based on both permanent magnet and electromagnet principles, along with a thorough exploration of the influencing factors impacting magnetic droplet manipulation. Additionally, an in-depth review of magnetic actuation mechanisms and various droplet manipulation methods is presented. Furthermore, the article elucidates the biomedical applications of magnetic droplet manipulation, particularly its role in diagnostic assays, drug discovery, and cell culture. Finally, the highlights and challenges of magnetic droplet manipulation in biomedical applications are described in detail.","PeriodicalId":18194,"journal":{"name":"Magnetochemistry","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140695727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: Gautam et al. Experimental Thermal Conductivity Studies of Agar-Based Aqueous Suspensions with Lignin Magnetic Nanocomposites. Magnetochemistry 2024, 10, 12 更正:琼脂基水悬浮液与木质素磁性纳米复合材料的热传导实验研究。磁化学 2024,10,12
IF 2.7 4区 化学
Magnetochemistry Pub Date : 2024-04-15 DOI: 10.3390/magnetochemistry10040027
Bishal Gautam, Saja M. Nabat Al-Ajrash, Mohammad Jahid Hasan, Abhishek Saini, Sarah J. Watzman, E. Ureña-Benavides, Erick S. Vasquez-Guardado
{"title":"Correction: Gautam et al. Experimental Thermal Conductivity Studies of Agar-Based Aqueous Suspensions with Lignin Magnetic Nanocomposites. Magnetochemistry 2024, 10, 12","authors":"Bishal Gautam, Saja M. Nabat Al-Ajrash, Mohammad Jahid Hasan, Abhishek Saini, Sarah J. Watzman, E. Ureña-Benavides, Erick S. Vasquez-Guardado","doi":"10.3390/magnetochemistry10040027","DOIUrl":"https://doi.org/10.3390/magnetochemistry10040027","url":null,"abstract":"In the original publication [...]","PeriodicalId":18194,"journal":{"name":"Magnetochemistry","volume":null,"pages":null},"PeriodicalIF":2.7,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140701349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信