Macromolecular Theory and Simulations最新文献

筛选
英文 中文
Masthead: Macromol. Theory Simul. 3/2024 刊头:Macromol.理论模拟3/2024
IF 1.4 4区 工程技术
Macromolecular Theory and Simulations Pub Date : 2024-05-17 DOI: 10.1002/mats.202470006
{"title":"Masthead: Macromol. Theory Simul. 3/2024","authors":"","doi":"10.1002/mats.202470006","DOIUrl":"https://doi.org/10.1002/mats.202470006","url":null,"abstract":"","PeriodicalId":18157,"journal":{"name":"Macromolecular Theory and Simulations","volume":"33 3","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mats.202470006","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140953150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling the Interface Between Phases in Dense Polymer-Carbon Black Nanoparticle Composites by Dielectric Spectroscopy: Where Are We Now and What are the Opportunities? 通过介电光谱学模拟致密聚合物-碳黑纳米粒子复合材料中的相间界面:我们的现状和机遇是什么?
IF 1.4 4区 工程技术
Macromolecular Theory and Simulations Pub Date : 2024-05-17 DOI: 10.1002/mats.202470005
Christian Brosseau
{"title":"Modeling the Interface Between Phases in Dense Polymer-Carbon Black Nanoparticle Composites by Dielectric Spectroscopy: Where Are We Now and What are the Opportunities?","authors":"Christian Brosseau","doi":"10.1002/mats.202470005","DOIUrl":"https://doi.org/10.1002/mats.202470005","url":null,"abstract":"<p><b>Front Cover</b>: Schematic illustration showing the structural inhomogeneities of the interphase in a polymer nanocomposite. The large surface area of aggregates creates adsorbed localized sites at which chains can hardly move and can be viewed as permanent links tying individual aggregates. On a molecular scale, the crystalline and amorphous regions are interconnected by chains that participate in both regions. More details can be found in article number 2400009 by Christian Brosseau.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":18157,"journal":{"name":"Macromolecular Theory and Simulations","volume":"33 3","pages":""},"PeriodicalIF":1.4,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mats.202470005","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140953149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Do Entangled Polymer Chains Reptate? 纠缠在一起的聚合物链会重复吗?
IF 1.8 4区 工程技术
Macromolecular Theory and Simulations Pub Date : 2024-05-02 DOI: 10.1002/mats.202400024
Kia L. Ngai
{"title":"Do Entangled Polymer Chains Reptate?","authors":"Kia L. Ngai","doi":"10.1002/mats.202400024","DOIUrl":"10.1002/mats.202400024","url":null,"abstract":"<p>Neutron spin echo spectroscopy of entangled polymer melts [M. Zamponi, et al. <i>J. Phys. Chem. B</i> <b>2008,</b> <i>112</i>, 16220], and of tracer diffusion of short polymer chains in highly entangled polymer melt [M. Zamponi et al. <i>Phys. Rev. Lett</i>. <b>2021</b>, <i>126</i>, 187801.] and [M. Kruteva et al. <i>Macromolecules</i> <b>2021</b>, <i>54</i>, 11384] found the center-of-mass mean-square displacements at shorter times are subdiffusive, heterogeneous, non-Gaussian, and cooperative. These properties contradict the assumption of reptation within the tube in the tube-reptation (TR) model, but are in accord with the predictions from the many-chain cooperative dynamics in the theory of Guenza. The inadequacy of the TR model revealed by the microscopic experiments and theory motivates the author to reexamine previously published data of diffusion of entangled polymer chains from experiments and simulations used to test the TR model. The results reported in this study lead to the conclusion that the key predictions of the TR model are at variance with experimental and simulation data. The cause lies in the reptation hypothesis contradicting the cooperative nature of entangled chain diffusion proven by its dynamics being isomorphic to cooperative diffusion in other materials. The Coupling Model has predictions consistent with the cooperative diffusion properties in interacting materials [<i>Prog. Mater. Sci</i>., <b>2023,</b> <i>139</i>, 101130.]. Applied to the entangled polymers, the predictions successfully explain the data, especially those contradicting the TR model. Thus, diffusion of entangled polymer chains is a cooperative many-chain process in having the universal properties of many-body cooperative diffusion established in many other interacting materials, and the reptation hypothesis is unwarranted.</p>","PeriodicalId":18157,"journal":{"name":"Macromolecular Theory and Simulations","volume":"33 5","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140830706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical Modeling and Simulation of the Nonisothermal Double Quench Phase Separation Process for the Production of Polymeric Membranes Using Polystyrene-Cyclohexanol Polymer Solution 利用聚苯乙烯-环己醇聚合物溶液生产聚合物膜的非等温双淬火相分离过程的数值建模与模拟
IF 1.8 4区 工程技术
Macromolecular Theory and Simulations Pub Date : 2024-04-29 DOI: 10.1002/mats.202400022
Samira Ranjbarrad, Philip K. Chan
{"title":"Numerical Modeling and Simulation of the Nonisothermal Double Quench Phase Separation Process for the Production of Polymeric Membranes Using Polystyrene-Cyclohexanol Polymer Solution","authors":"Samira Ranjbarrad,&nbsp;Philip K. Chan","doi":"10.1002/mats.202400022","DOIUrl":"10.1002/mats.202400022","url":null,"abstract":"<p>The double quench phase separation is a simplified type of continuous cooling process that is widely seen in industrial processes for polymeric membrane formation. Uncommon quenching conditions can lead to the creation of novel membrane microstructures. This study aims to theoretically investigate the impact of nonisothermality on the morphology formation during the double-quench thermally-induced phase separation process. First, quench is employed during different stages of phase separation to observe the possibility of secondary morphology formation. Next, two initial quench temperatures are selected, one shallow and the other deep. The initial solution temperature and the secondary quench temperature are kept constant to inspect the impact of the initial quench temperature on the structure formation. Lastly, the results of the secondary quench are compared with and without employing the enthalpy of demixing. Results verified that the stage of phase separation, the initial and secondary quench temperatures, cooling rate, and the secondary quench composition are the most important parameters in the the nonisothermal double quench phase separation process. The morphology should be well-developed in order for the secondary structure formation. In addition, it is shown that heat generation during demixing in the primary and secondary quenches significantly influences the secondary morphology formation.</p>","PeriodicalId":18157,"journal":{"name":"Macromolecular Theory and Simulations","volume":"33 5","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mats.202400022","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140830704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Swelling Behaviors of Natural Rubber/Solvent Systems Based on the Extended Modified Double Lattice Model 基于扩展修正双晶格模型的天然橡胶/溶剂体系的溶胀行为
IF 1.8 4区 工程技术
Macromolecular Theory and Simulations Pub Date : 2024-04-18 DOI: 10.1002/mats.202400015
Sung Jin Pai, Eung Jun Kang, Won Min Ahn, Jae Sung Kim, Young Chan Bae, Ji Won Kwon, Jeong Seok Oh
{"title":"Swelling Behaviors of Natural Rubber/Solvent Systems Based on the Extended Modified Double Lattice Model","authors":"Sung Jin Pai,&nbsp;Eung Jun Kang,&nbsp;Won Min Ahn,&nbsp;Jae Sung Kim,&nbsp;Young Chan Bae,&nbsp;Ji Won Kwon,&nbsp;Jeong Seok Oh","doi":"10.1002/mats.202400015","DOIUrl":"10.1002/mats.202400015","url":null,"abstract":"<p>Swelling experiments are conducted on nonfiller natural rubber using four solvents (toluene, cyclohexane, tetrahydrofuran (THF), and methylethylketone (MEK)) over temperatures from 10 to 70 °C. Toluene, cyclohexane, and THF, classified as effective solvents, show swelling ratios between 3 and 7, influenced by the crosslink density of the rubber. MEK, however, has a lower ratio of 1.5 to 2. Temperature has a minor impact on swelling compared to the crosslink density. The study evaluates the Extended Modified Double Lattice (EMDL) model for its mixing contribution in polymer network swelling, aiming to improve the Flory–Hüggins (FH) model. The superiority of EMDL above FH is in the boundary condition at the unvulcanized state, the former aligning its interaction energy with values from solvent activities in primary linear polymer/solvent solutions, unlike the FH model. The EMDL model also accounts for oriented interactions in polar solvents through a secondary lattice, linking specific interaction energy with solvent dipole moments. The study observes a nonlinear correlation between crosslinking density and sulfur amount, proposing a nonrandom mixing at lower sulfur concentrations. This model shows strong alignment with experimental data, suggesting that replacing the FH model's mixing contribution with the EMDL model could improve results with minimal additional complexity.</p>","PeriodicalId":18157,"journal":{"name":"Macromolecular Theory and Simulations","volume":"33 4","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mats.202400015","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140625072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical Analysis of the Blade Coating Process Using Non-Newtonian Nanofluid with Magnetohydrodynamic (MHD) and Slip Effects 使用具有磁流体动力(MHD)和滑移效应的非牛顿纳米流体对叶片涂层工艺进行数值分析
IF 1.8 4区 工程技术
Macromolecular Theory and Simulations Pub Date : 2024-04-17 DOI: 10.1002/mats.202400017
Muhammad Asif Javed, Abuzar Ghaffari, Sami Ullah Khan, Ehab Elattar
{"title":"Numerical Analysis of the Blade Coating Process Using Non-Newtonian Nanofluid with Magnetohydrodynamic (MHD) and Slip Effects","authors":"Muhammad Asif Javed,&nbsp;Abuzar Ghaffari,&nbsp;Sami Ullah Khan,&nbsp;Ehab Elattar","doi":"10.1002/mats.202400017","DOIUrl":"10.1002/mats.202400017","url":null,"abstract":"<p>The coating process is widely used in various industries to enhance the production quality and efficiency. This study gives a comprehensive analysis of non-isothermal blade coating of non-Newtonian nanofluid incorporating magnetic, thermophoresis, and Brownian effects. The mathematical equations derived from mass, momentum, and energy conservation laws are initially streamlined by means of lubrication approximation theory (LAT). Subsequently, these dimensionless equations are solved in dimensionless form numerically using fourth order Runge–Kutta and Newton–Raphson methods. This study includes the effects of the slip parameter, magnetohydrodynamic (MHD) and other material parameters on the coating thickness (<span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>h</mi>\u0000 <mn>1</mn>\u0000 </msub>\u0000 <annotation>${{h}_1}$</annotation>\u0000 </semantics></math>), blade load, velocity, temperature, concentration, and pressure profiles through graphs and tables. The velocity of molten polymer increases near the substrate while it decreases near the blade surface as the slip parameter increases. The temperature distribution increases as the Brinkman number rises, with the maximum temperature occurring in the nip region of the flow. The coating thickness and load-carrying force for both plane and exponential coater increase with higher values of the magnetohydrodynamic (MHD) parameter.</p>","PeriodicalId":18157,"journal":{"name":"Macromolecular Theory and Simulations","volume":"33 4","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140611288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantitative Structure-Property Relations for Polyester Materials via Statistical Learning 通过统计学习确定聚酯材料的定量结构-性能关系
IF 1.8 4区 工程技术
Macromolecular Theory and Simulations Pub Date : 2024-04-12 DOI: 10.1002/mats.202400008
Stephen McCoy, Damilola Ojedeji, Brendan Abolins, Cameron Brown, Manolis Doxastakis, Ioannis Sgouralis
{"title":"Quantitative Structure-Property Relations for Polyester Materials via Statistical Learning","authors":"Stephen McCoy,&nbsp;Damilola Ojedeji,&nbsp;Brendan Abolins,&nbsp;Cameron Brown,&nbsp;Manolis Doxastakis,&nbsp;Ioannis Sgouralis","doi":"10.1002/mats.202400008","DOIUrl":"10.1002/mats.202400008","url":null,"abstract":"<p>Statistical learning is employed to present a principled framework for the establishment of quantitative structure-property relationships (QSPR). Property predictions of industrial polymers formed by multiple reagents and at varying molecular weights are focused. A theoretical description of QSPR as well as a rigorous mathematical method is developed for the assimilation of experimental data. Results show that these methods can perform exceptionally well at establishing QSPR for glass transition temperature and intrinsic viscosity of polyesters.</p>","PeriodicalId":18157,"journal":{"name":"Macromolecular Theory and Simulations","volume":"33 4","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mats.202400008","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140586061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Alternative Explanation of the Microscopic Dynamics of Cyclic Polymers 循环聚合物微观动力学的另一种解释
IF 1.8 4区 工程技术
Macromolecular Theory and Simulations Pub Date : 2024-04-03 DOI: 10.1002/mats.202400021
Kia L. Ngai
{"title":"An Alternative Explanation of the Microscopic Dynamics of Cyclic Polymers","authors":"Kia L. Ngai","doi":"10.1002/mats.202400021","DOIUrl":"10.1002/mats.202400021","url":null,"abstract":"<p>According to recent reviews and experiments, some key dynamic properties of cyclic polymers from neutron spin echo spectroscopy, molecular dynamics simulations, and rheological measurements are at variance with the predictions from theories based on motions restricted by fixed obstacles. These dynamic properties including non-Gaussianity, heterogeneity, and subdiffusive center of mass mean square displacements turn out to be hallmarks of cooperative dynamics found in entangled linear polymers, and in other many-units interacting systems that are not polymers. The current situation suggests new theory emphasizing that cooperative many-chain dynamics is needed to explain the properties. The Coupling Model is such a theory. Its predictions are applied to the dynamic properties of cyclic polymers here to show consistency with experiments and simulations.</p>","PeriodicalId":18157,"journal":{"name":"Macromolecular Theory and Simulations","volume":"33 5","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140586164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Highly Crosslinked Domains on the Dimensions of Network Polymers 高交联域对网络聚合物尺寸的影响
IF 1.8 4区 工程技术
Macromolecular Theory and Simulations Pub Date : 2024-03-21 DOI: 10.1002/mats.202300068
Hidetaka Tobita
{"title":"Effect of Highly Crosslinked Domains on the Dimensions of Network Polymers","authors":"Hidetaka Tobita","doi":"10.1002/mats.202300068","DOIUrl":"10.1002/mats.202300068","url":null,"abstract":"<p>The effect of spatial inhomogeneity on the dimensions of network polymers is investigated by using model networks containing highly crosslinked domains. It is found that the dimensions of network architecture consisting of densely crosslinked domains connected by long chains are larger than those of loosely crosslinked domains connected by short chains, given the cycle rank is the same. The cases with the domains connected by the domains are also investigated. In all cases, the dimensions are larger than the corresponding randomly crosslinked homogeneous networks. This is because the loosely crosslinked regions dominate the dimensions of network polymers. The master curve relationship found for the statistical networks is applicable also for the present types of spatial inhomogeneous network polymers when the cycle rank is increased to make the network well-developed in a homologous series of networks.</p>","PeriodicalId":18157,"journal":{"name":"Macromolecular Theory and Simulations","volume":"33 4","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mats.202300068","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140199970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dissipative Particle Dynamics Study on the Phase Region of Spatial Gradient Materials Produced by Photoinduced Isomerization 关于光诱导异构化产生的空间梯度材料相区的耗散粒子动力学研究
IF 1.8 4区 工程技术
Macromolecular Theory and Simulations Pub Date : 2024-03-14 DOI: 10.1002/mats.202400006
Hui Li, Kaiming Gao, Haitao Zhao, Zijian Xue, Zhenbin Chen, Xuefeng Lu, Hong Liu
{"title":"Dissipative Particle Dynamics Study on the Phase Region of Spatial Gradient Materials Produced by Photoinduced Isomerization","authors":"Hui Li,&nbsp;Kaiming Gao,&nbsp;Haitao Zhao,&nbsp;Zijian Xue,&nbsp;Zhenbin Chen,&nbsp;Xuefeng Lu,&nbsp;Hong Liu","doi":"10.1002/mats.202400006","DOIUrl":"10.1002/mats.202400006","url":null,"abstract":"<p>Spatial gradient materials occupy an important research position in the field of functional materials with their unique porous structure. Gradient changes in pore size and density distribution have received extensive attention in the fields of biomimetic and smart materials. The gradient transition law is mathematically related to the driving force of isomerization reaction and component phase separation. In this study, a dissipative particle dynamics simulation is used to introduce photoisomerization reactions into the system. Lambert's law is used to construct a reaction model for the variation of light intensity with irradiation depth, and a gradient structure with a spatial transition law is obtained. The effects of the extinction coefficient <i>ε</i>, the initial reaction probability <i>Pr<sub>0</sub></i>, and the interactions α(<i>A,B</i>) between the isomerized molecules as well as the viscosity on the formation of the gradient structure are investigated in detail. Furthermore, the mathematical proportionality between the size of the phase region and interfacial energy of the two phases is elucidated. This study provides preliminary computational insights into the factors affecting the photoinduced phase separation process of polymeric gradient materials. It may help to develop effective strategies to improve the phase separation and properties of polymer gradient materials in subsequent studies.</p>","PeriodicalId":18157,"journal":{"name":"Macromolecular Theory and Simulations","volume":"33 4","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140128613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信