Numerical Simulation on Chain Dynamic of Polymer Solution in Microchannels: A Dissipative Particle Dynamics Study

IF 1.8 4区 工程技术 Q3 POLYMER SCIENCE
Hua Dong, Hao Zhou, Yi-Fei Li, Xiao-Bao Li, Liang-Liang Fan, Bo-Yao Wen, Liang Zhao
{"title":"Numerical Simulation on Chain Dynamic of Polymer Solution in Microchannels: A Dissipative Particle Dynamics Study","authors":"Hua Dong,&nbsp;Hao Zhou,&nbsp;Yi-Fei Li,&nbsp;Xiao-Bao Li,&nbsp;Liang-Liang Fan,&nbsp;Bo-Yao Wen,&nbsp;Liang Zhao","doi":"10.1002/mats.202400078","DOIUrl":null,"url":null,"abstract":"<p>The chain dynamics and the rheological property of the polymer solution in the microscale confined space (e.g., microchannel) are complex and still unclear. In this paper, based on the prior research work, a dissipative particle dynamics (DPD) method is established to systematically simulate the dynamic behavior of polymer chains and the properties of the polymer solution in microchannels by combining the modified FENE chain model and a new boundary condition setting, especially for the gradually contracted microchannel. It is found that the concentration of the polymer chain, the degree of constraint, and the Reynolds number influence the dynamic behavior of the polymer chain by changing the constraint effect or the hydrodynamic effect. In addition, the geometrical structure of the microchannel significantly changes the dynamic behavior of the polymer chain. The chain dynamics in the gradually contracted microchannel are quite different from that in the straight microchannel. Finally, the rheological characteristics of the power-law fluid and the lateral migration of the solid particle in the viscoelastic fluid in the microchannel are also simulated, and the simulation results are in good agreement with the result reported in the literature, which further verifies the accuracy of the present simulation method.</p>","PeriodicalId":18157,"journal":{"name":"Macromolecular Theory and Simulations","volume":"34 2","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mats.202400078","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The chain dynamics and the rheological property of the polymer solution in the microscale confined space (e.g., microchannel) are complex and still unclear. In this paper, based on the prior research work, a dissipative particle dynamics (DPD) method is established to systematically simulate the dynamic behavior of polymer chains and the properties of the polymer solution in microchannels by combining the modified FENE chain model and a new boundary condition setting, especially for the gradually contracted microchannel. It is found that the concentration of the polymer chain, the degree of constraint, and the Reynolds number influence the dynamic behavior of the polymer chain by changing the constraint effect or the hydrodynamic effect. In addition, the geometrical structure of the microchannel significantly changes the dynamic behavior of the polymer chain. The chain dynamics in the gradually contracted microchannel are quite different from that in the straight microchannel. Finally, the rheological characteristics of the power-law fluid and the lateral migration of the solid particle in the viscoelastic fluid in the microchannel are also simulated, and the simulation results are in good agreement with the result reported in the literature, which further verifies the accuracy of the present simulation method.

Abstract Image

微尺度密闭空间(如微通道)中的聚合物链动力学和聚合物溶液的流变特性非常复杂,目前仍不清楚。本文在前期研究工作的基础上,结合改进的 FENE 链模型和新的边界条件设置,特别是针对逐渐收缩的微通道,建立了耗散粒子动力学(DPD)方法,系统地模拟了微通道中聚合物链的动态行为和聚合物溶液的性质。研究发现,聚合物链的浓度、约束程度和雷诺数会通过改变约束效应或流体力学效应影响聚合物链的动态行为。此外,微通道的几何结构也会显著改变聚合物链的动态行为。逐渐收缩的微通道中的链动态与直微通道中的链动态截然不同。最后,还模拟了微通道中幂律流体的流变特性和粘弹性流体中固体颗粒的横向迁移,模拟结果与文献报道的结果非常吻合,这进一步验证了本模拟方法的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Macromolecular Theory and Simulations
Macromolecular Theory and Simulations 工程技术-高分子科学
CiteScore
3.00
自引率
14.30%
发文量
45
审稿时长
2 months
期刊介绍: Macromolecular Theory and Simulations is the only high-quality polymer science journal dedicated exclusively to theory and simulations, covering all aspects from macromolecular theory to advanced computer simulation techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信