Macromolecular Reaction Engineering最新文献

筛选
英文 中文
Polymer Versus Polymerization Fouling: Basic Deposition Mechanisms During Emulsion Polymerization by the Example of a Vinyl Acetate and Versa 10 Copolymer 聚合物与聚合污垢:以醋酸乙烯酯和 Versa® 10 共聚物为例:乳液聚合过程中的基本沉积机制
IF 1.5 4区 工程技术
Macromolecular Reaction Engineering Pub Date : 2024-01-09 DOI: 10.1002/mren.202300057
Annika Klinkert, Zoe Friedrich, Elisabeth Glatt, Wolfgang Augustin, Stephan Scholl
{"title":"Polymer Versus Polymerization Fouling: Basic Deposition Mechanisms During Emulsion Polymerization by the Example of a Vinyl Acetate and Versa 10 Copolymer","authors":"Annika Klinkert,&nbsp;Zoe Friedrich,&nbsp;Elisabeth Glatt,&nbsp;Wolfgang Augustin,&nbsp;Stephan Scholl","doi":"10.1002/mren.202300057","DOIUrl":"10.1002/mren.202300057","url":null,"abstract":"<p>The deposition process during emulsion polymerization can be classified as both particulate and reaction fouling, but a deeper understanding of the deposition mechanism, especially in combination with the polymerization process, is lacking. Here, a more in-depth understanding of the deposition mechanism is sought by investigating the fouling formation of a Vinyl acetate and Versa 10 copolymer on a heated stainless steel surface during emulsion polymerization. Its deposition behavior is also compared with the behavior of an already reacted polymer. All possible influencing factors are investigated separately, and the fouling is quantified by the mass based fouling resistance and the fouling layer composition. The fouling rates of both experimental approaches (ongoing reaction versus already reacted polymer) are used to determine the fraction of reaction fouling along the reaction pathway. The solids content and the driving temperature difference are identified as the main factors influencing fouling formation. The deposited material is composed of latex particles and emulsifier with particle size and number depending on the respective equilibrium composition of the fluid phase. The reaction fouling rate is correlated with the proportion of free initiator radicals and the amount of dissolved monomer in the aqueous phase.</p>","PeriodicalId":18052,"journal":{"name":"Macromolecular Reaction Engineering","volume":"18 3","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mren.202300057","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139411984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanical, Rheological, and Heat Seal Properties of 1-Octene Grafted Low Density Polyethylene Films 1 辛烯接枝低密度聚乙烯薄膜的机械、流变和热封性能
IF 1.5 4区 工程技术
Macromolecular Reaction Engineering Pub Date : 2023-12-26 DOI: 10.1002/mren.202300060
Fatemeh Salmani, Rasoul Shemshadi, Issa Mousazadeh Moghaddampour, Shervin Ahmadi, Ghasem Naderi, Razi Sahraeian, Seyed Mohamad Reza Paran
{"title":"Mechanical, Rheological, and Heat Seal Properties of 1-Octene Grafted Low Density Polyethylene Films","authors":"Fatemeh Salmani,&nbsp;Rasoul Shemshadi,&nbsp;Issa Mousazadeh Moghaddampour,&nbsp;Shervin Ahmadi,&nbsp;Ghasem Naderi,&nbsp;Razi Sahraeian,&nbsp;Seyed Mohamad Reza Paran","doi":"10.1002/mren.202300060","DOIUrl":"10.1002/mren.202300060","url":null,"abstract":"<p>Heat seal and mechanical properties of 1-octene grafted low density polyethylene films containing various concentrations of Dicumyl peroxide as the initiator and 1-octene grafting agent is investigated through using experimental measurements. The results of differential scanning calorimeter (DSC) measurements revealed that the melting temperature shifts to higher values and the peak of the DSC curve becomes wider with the increase of 1-octene concentrations. Thermogravimetric analysis (TGA) revealed a higher thermal stability up to 20 °C for 1-octene grafted PE compared with neat LDPE alloy. The results of stress–strain measurements revealed that the 1-octene grafted PE alloys has higher tensile strength in comparison with neat PE alloy and samples containing only DCP initiator. The results of heat seal analysis indicated that both DCP initiator and 1-octene tended to offer a moderate increase peel strength of PE alloy. DMTA measurements for various grafted PE alloys show a higher damping factor in comparison with neat LDPE alloy. Rheological measurements indicated a higher storage modulus up to 25% and higher complex viscosity for grafted PE samples containing 1-octene comonomer.</p>","PeriodicalId":18052,"journal":{"name":"Macromolecular Reaction Engineering","volume":"18 2","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139056498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigating The Kinetics of Anionic Polymerization of Butadiene in Presence of 1,2-diethoxypropane Using Online Near-Infrared Spectroscopy 利用在线近红外光谱仪研究丁二烯在 1,2-二乙氧基丙烷存在下的阴离子聚合动力学
IF 1.5 4区 工程技术
Macromolecular Reaction Engineering Pub Date : 2023-12-20 DOI: 10.1002/mren.202300051
Luis Rodriguez-Guadarrama
{"title":"Investigating The Kinetics of Anionic Polymerization of Butadiene in Presence of 1,2-diethoxypropane Using Online Near-Infrared Spectroscopy","authors":"Luis Rodriguez-Guadarrama","doi":"10.1002/mren.202300051","DOIUrl":"10.1002/mren.202300051","url":null,"abstract":"<p>Online near-infrared spectroscopy technique is employed to investigate the kinetics of the anionic polymerization of butadiene with n-butyllithium initiator in the presence of the microstructure modifier 1,2-diethoxypropane (DEP) in cyclohexane solvent. A phenomenological kinetic model is developed to describe the anionic polymerization process in the presence of DEP, and its influence on the microstructure of polybutadiene under different conditions is determined.</p>","PeriodicalId":18052,"journal":{"name":"Macromolecular Reaction Engineering","volume":"18 2","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138826305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Front Cover: Macromol. React. Eng. 6/2023 封面:Macromol.React.Eng.6/2023
IF 1.5 4区 工程技术
Macromolecular Reaction Engineering Pub Date : 2023-12-14 DOI: 10.1002/mren.202370012
{"title":"Front Cover: Macromol. React. Eng. 6/2023","authors":"","doi":"10.1002/mren.202370012","DOIUrl":"https://doi.org/10.1002/mren.202370012","url":null,"abstract":"<p>\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":18052,"journal":{"name":"Macromolecular Reaction Engineering","volume":"17 6","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mren.202370012","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138634238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Masthead: Macromol. React. Eng. 6/2023 刊头:Macromol.React.Eng.6/2023
IF 1.5 4区 工程技术
Macromolecular Reaction Engineering Pub Date : 2023-12-14 DOI: 10.1002/mren.202370013
{"title":"Masthead: Macromol. React. Eng. 6/2023","authors":"","doi":"10.1002/mren.202370013","DOIUrl":"https://doi.org/10.1002/mren.202370013","url":null,"abstract":"","PeriodicalId":18052,"journal":{"name":"Macromolecular Reaction Engineering","volume":"17 6","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mren.202370013","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138634237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
What Can Industrial Catalytic Olefin Polymerization Plants Tell Us About Reaction Kinetics? From Production Rate and Residence Time to Catalyst Reaction Performance. 工业催化烯烃聚合装置能告诉我们什么反应动力学?从生产速率和停留时间到催化剂反应性能。
IF 1.5 4区 工程技术
Macromolecular Reaction Engineering Pub Date : 2023-11-29 DOI: 10.1002/mren.202300046
Vasileios Touloupidis, João B. P. Soares
{"title":"What Can Industrial Catalytic Olefin Polymerization Plants Tell Us About Reaction Kinetics? From Production Rate and Residence Time to Catalyst Reaction Performance.","authors":"Vasileios Touloupidis,&nbsp;João B. P. Soares","doi":"10.1002/mren.202300046","DOIUrl":"10.1002/mren.202300046","url":null,"abstract":"<p>The information available in daily plant operation data is not fully exploited by polymer reaction engineers: what do the catalytic olefin polymerization plants tell? In this article, a method is proposed to increase catalyst and process know-how, based on experimentally acquired production rate results, coming from a continuous tandem reactor polymerization process. The polymer reaction engineering methodology is also discussed in detail for connecting the catalyst reaction performance to the expected activity profile and yield for batch operation, together with the residence time distribution effect for continuous operation. The potential of the proposed methodology is highlighted with a theoretical example and the effectiveness of the method is demonstrated with an applied example, accurately estimating deactivation parameter values for two catalysts based on plant information and, validated based on small-scale polymerization experiments.</p>","PeriodicalId":18052,"journal":{"name":"Macromolecular Reaction Engineering","volume":"18 2","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138506751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On-Line Monitoring Device for Gas Phase Composition Based on Machine Learning Models and Its Application in the Gas Phase Copolymerization of Olefins 基于机器学习模型的气相成分在线监测装置及其在烯烃气相共聚中的应用
IF 1.5 4区 工程技术
Macromolecular Reaction Engineering Pub Date : 2023-10-20 DOI: 10.1002/mren.202300043
Xu Huang, Shaojie Zheng, Zhen Yao, Bogeng Li, Wenbo Yuan, Qiwei Ding, Zong Wang, Jijiang Hu
{"title":"On-Line Monitoring Device for Gas Phase Composition Based on Machine Learning Models and Its Application in the Gas Phase Copolymerization of Olefins","authors":"Xu Huang,&nbsp;Shaojie Zheng,&nbsp;Zhen Yao,&nbsp;Bogeng Li,&nbsp;Wenbo Yuan,&nbsp;Qiwei Ding,&nbsp;Zong Wang,&nbsp;Jijiang Hu","doi":"10.1002/mren.202300043","DOIUrl":"10.1002/mren.202300043","url":null,"abstract":"<p>This study addresses the challenges of time-delay and low accuracy in online gas-phase composition monitoring during olefin copolymerization processes. Three flowmeters based on different mechanisms are installed in series to measure the real-time exhaust gas flow rate from the reactor. For the same gas flow, the three flowmeters display different readings, which vary with the properties and composition of the gas mixture. Consequently, the composition of the mixed gas can be determined by analyzing the reading of the three flowmeters. Fitting equations and three machine learning models, namely decision trees, random forests, and extreme gradient boosting, are employed to calculate the gas composition. The results from cold-model experimental data demonstrate that the XGBoost model outperforms others in terms of accuracy and generalization capabilities. For the concentration of ethylene, propylene, and hydrogen, the determination coefficients (<i>R<sup>2</sup></i>) were 0.9852, 0.9882, and 0.9518, respectively, with corresponding normalized root mean square error (<i>NRMSE</i>) values of 0.0352, 0.0312, and 0.0706. The effectiveness of the online monitoring device is further validated through gas phase copolymerization experiments involving ethylene and propylene. The yield and composition of the ethylene and propylene copolymers are successfully predicted using the online measurement data.</p>","PeriodicalId":18052,"journal":{"name":"Macromolecular Reaction Engineering","volume":"18 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135112364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Monomer Transport in Emulsion Polymerization IV Gaseous Monomers 乳液聚合中的单体迁移 IV 气体单体
IF 1.5 4区 工程技术
Macromolecular Reaction Engineering Pub Date : 2023-10-19 DOI: 10.1002/mren.202300048
Julia Merlin, F. Joseph Schork
{"title":"Monomer Transport in Emulsion Polymerization IV Gaseous Monomers","authors":"Julia Merlin,&nbsp;F. Joseph Schork","doi":"10.1002/mren.202300048","DOIUrl":"10.1002/mren.202300048","url":null,"abstract":"<p>Methods for the evaluation of the Damkohler number for monomer transport during emulsion homopolymerization and copolymerization are extended to the analysis of gaseous monomers. Results indicate that the monomer transport limitation of gaseous monomers in both homo and copolymerization is strongly dependent on overall pressure through Henry's law relationship governing the concentration of monomer in the aqueous phase in equilibrium with monomer bubbles. At low pressures, most monomers studied exhibit monomer transport limitations; however, even at very high pressures, some gaseous monomers still exhibit monomer transport limitations.</p>","PeriodicalId":18052,"journal":{"name":"Macromolecular Reaction Engineering","volume":"18 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135778848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Masthead: Macromol. React. Eng. 5/2023 刊头:Macromol。反应工程5/2023
IF 1.5 4区 工程技术
Macromolecular Reaction Engineering Pub Date : 2023-10-18 DOI: 10.1002/mren.202370011
{"title":"Masthead: Macromol. React. Eng. 5/2023","authors":"","doi":"10.1002/mren.202370011","DOIUrl":"https://doi.org/10.1002/mren.202370011","url":null,"abstract":"","PeriodicalId":18052,"journal":{"name":"Macromolecular Reaction Engineering","volume":"17 5","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mren.202370011","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50146052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Toward Reactive Processing of Polyamide 6 Based Blends with Polyethylene Grafted with Maleic Anhydride and Acrylic Acid: Effect of Functionalization Degree 马来酸酐和丙烯酸接枝聚乙烯与聚酰胺6基共混物的反应加工:官能化程度的影响
IF 1.5 4区 工程技术
Macromolecular Reaction Engineering Pub Date : 2023-10-18 DOI: 10.1002/mren.202370010
Carlos Bruno Barreto Luna, Eduardo da Silva Barbosa Ferreira, Anna Raffaela de Matos Costa, Yeda Medeiros Bastos de Almeida, João Baptista da Costa Agra de Melo, Edcleide Maria Araújo
{"title":"Toward Reactive Processing of Polyamide 6 Based Blends with Polyethylene Grafted with Maleic Anhydride and Acrylic Acid: Effect of Functionalization Degree","authors":"Carlos Bruno Barreto Luna,&nbsp;Eduardo da Silva Barbosa Ferreira,&nbsp;Anna Raffaela de Matos Costa,&nbsp;Yeda Medeiros Bastos de Almeida,&nbsp;João Baptista da Costa Agra de Melo,&nbsp;Edcleide Maria Araújo","doi":"10.1002/mren.202370010","DOIUrl":"https://doi.org/10.1002/mren.202370010","url":null,"abstract":"<p><b>Front Cover</b>: In article number 2300031, Carlos Bruno Barreto Luna and co-workers develop reactive blends of polyamide 6 and acrylic acid-grafted polyethylene (PE-g-AA). The PE-g-AA carboxylic groups react with the amine terminal groups of polyamide 6, forming the amide group and interface stabilizing the PA6/PE-g-AA blend. This promote a refinement of the dispersed PE-g-AA particles in polyamide 6, generating high-performance in impact strength and elongation at break.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":18052,"journal":{"name":"Macromolecular Reaction Engineering","volume":"17 5","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mren.202370010","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50146051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信