乳液聚合中的单体迁移 IV 气体单体

IF 1.8 4区 工程技术 Q3 ENGINEERING, CHEMICAL
Julia Merlin, F. Joseph Schork
{"title":"乳液聚合中的单体迁移 IV 气体单体","authors":"Julia Merlin,&nbsp;F. Joseph Schork","doi":"10.1002/mren.202300048","DOIUrl":null,"url":null,"abstract":"<p>Methods for the evaluation of the Damkohler number for monomer transport during emulsion homopolymerization and copolymerization are extended to the analysis of gaseous monomers. Results indicate that the monomer transport limitation of gaseous monomers in both homo and copolymerization is strongly dependent on overall pressure through Henry's law relationship governing the concentration of monomer in the aqueous phase in equilibrium with monomer bubbles. At low pressures, most monomers studied exhibit monomer transport limitations; however, even at very high pressures, some gaseous monomers still exhibit monomer transport limitations.</p>","PeriodicalId":18052,"journal":{"name":"Macromolecular Reaction Engineering","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monomer Transport in Emulsion Polymerization IV Gaseous Monomers\",\"authors\":\"Julia Merlin,&nbsp;F. Joseph Schork\",\"doi\":\"10.1002/mren.202300048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Methods for the evaluation of the Damkohler number for monomer transport during emulsion homopolymerization and copolymerization are extended to the analysis of gaseous monomers. Results indicate that the monomer transport limitation of gaseous monomers in both homo and copolymerization is strongly dependent on overall pressure through Henry's law relationship governing the concentration of monomer in the aqueous phase in equilibrium with monomer bubbles. At low pressures, most monomers studied exhibit monomer transport limitations; however, even at very high pressures, some gaseous monomers still exhibit monomer transport limitations.</p>\",\"PeriodicalId\":18052,\"journal\":{\"name\":\"Macromolecular Reaction Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Reaction Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mren.202300048\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Reaction Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mren.202300048","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

评估乳液均聚和共聚过程中单体迁移的达姆克勒数的方法扩展到了气态单体的分析。结果表明,气态单体在均聚和共聚过程中的单体迁移限制在很大程度上取决于总压力,这种关系是通过亨利定律来控制水相中与单体气泡平衡的单体浓度。在低压条件下,所研究的大多数单体都表现出单体迁移限制;然而,即使在非常高的压力下,一些气态单体仍然表现出单体迁移限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Monomer Transport in Emulsion Polymerization IV Gaseous Monomers

Monomer Transport in Emulsion Polymerization IV Gaseous Monomers

Monomer Transport in Emulsion Polymerization IV Gaseous Monomers

Methods for the evaluation of the Damkohler number for monomer transport during emulsion homopolymerization and copolymerization are extended to the analysis of gaseous monomers. Results indicate that the monomer transport limitation of gaseous monomers in both homo and copolymerization is strongly dependent on overall pressure through Henry's law relationship governing the concentration of monomer in the aqueous phase in equilibrium with monomer bubbles. At low pressures, most monomers studied exhibit monomer transport limitations; however, even at very high pressures, some gaseous monomers still exhibit monomer transport limitations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Macromolecular Reaction Engineering
Macromolecular Reaction Engineering 工程技术-高分子科学
CiteScore
2.60
自引率
20.00%
发文量
55
审稿时长
3 months
期刊介绍: Macromolecular Reaction Engineering is the established high-quality journal dedicated exclusively to academic and industrial research in the field of polymer reaction engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信