Catalysis Research最新文献

筛选
英文 中文
Controllable Cyclopalladated Polythiophene Imine Monolayer by Self-Assembly, Hybrid Doping and Electrochemical Polymerization: A Simple Way to Enhance Activity and Stability 自组装、杂化掺杂和电化学聚合的可控环钯化聚噻吩亚胺单分子膜:一种提高活性和稳定性的简单方法
Catalysis Research Pub Date : 2021-12-13 DOI: 10.21926/cr.2201003
Louguangshu Huang, Hui Liu, Xiaoxia Xue, Wuduo Zhao, Tiesheng Li
{"title":"Controllable Cyclopalladated Polythiophene Imine Monolayer by Self-Assembly, Hybrid Doping and Electrochemical Polymerization: A Simple Way to Enhance Activity and Stability","authors":"Louguangshu Huang, Hui Liu, Xiaoxia Xue, Wuduo Zhao, Tiesheng Li","doi":"10.21926/cr.2201003","DOIUrl":"https://doi.org/10.21926/cr.2201003","url":null,"abstract":"In this article, an approach to generate self-assembly cyclopalladated polythiophene imine monolayers (denoted as ITO@Pd-CPTIMs) is described. The monolayers were fabricated by combining self-assembly (SA), hybrid doping (HD), and electrochemical polymerization (ECP) called SA-HD-ECP. The catalytic activity and stability of the polymerized monolayers in the Suzuki coupling reaction were improved by modulating the structure and morphology in hybrid doping using different thiophene derivatives, concentrations, and scanning numbers during electrochemical polymerization. Morphological changes in the catalytic surface associated with catalytic activity were investigated. ITO@Pd-PTF could improve catalytic activity with a higher TON value (45000 mol/molcat) and attain recycling ability at least 10 times.","PeriodicalId":178524,"journal":{"name":"Catalysis Research","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126943806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Acetonitrile Combustion over Copper-Based Nanocatalysts: A Structure-Performance Relationship Study 乙腈在铜基纳米催化剂上燃烧:结构-性能关系研究
Catalysis Research Pub Date : 2021-12-01 DOI: 10.21926/cr.2201002
J. A. P. Ponciano, M. S. Batista
{"title":"Acetonitrile Combustion over Copper-Based Nanocatalysts: A Structure-Performance Relationship Study","authors":"J. A. P. Ponciano, M. S. Batista","doi":"10.21926/cr.2201002","DOIUrl":"https://doi.org/10.21926/cr.2201002","url":null,"abstract":"In this paper, the relationship between activity and structure of Cu2+ in different chemical environments of Cu-BETA, La2CuO4, and CuO nanocatalysts was systematically investigated for acetonitrile combustion. The study revealed that exchanged and octahedral species of Cu2+ coexist in Cu-BETA, while octahedral species are dominant in CuO and La2CuO4. All nanocatalysts achieved high conversion rates of acetonitrile, which rapidly increased with temperature. CuO and La2CuO4 led to the formation of undesired products such as N2O and NO. On the other hand, Cu-BETA showed high acetonitrile conversion along with a high N2 yield. The excellent performance of Cu-BETA can be attributed to the easy reducibility of the highly dispersed Cu-species and the small crystallite size. Cu-BETA also exhibited exceptional stability. Therefore, the high conversion rate and the high N2 yield make Cu-BETA a promising catalyst for acetonitrile combustion.","PeriodicalId":178524,"journal":{"name":"Catalysis Research","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115389641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Determining the Band Alignment at the BiVO4|NiOOH Interface Using the Hybrid DFT Technique 利用混合DFT技术确定BiVO4|NiOOH界面的波段对准
Catalysis Research Pub Date : 2021-11-29 DOI: 10.21926/cr.2201005
J. Conesa
{"title":"Determining the Band Alignment at the BiVO4|NiOOH Interface Using the Hybrid DFT Technique","authors":"J. Conesa","doi":"10.21926/cr.2201005","DOIUrl":"https://doi.org/10.21926/cr.2201005","url":null,"abstract":"It is important to understand the band offsets between semiconductors, which are crucial to determine the direction of electron transfer at the interfaces. Two methods are normally used to determine the direction from the first principles: alternating slabs put in contact (without empty spaces between them) and separate calculations for each material surface in the presence of vacuum spaces. The first method may introduce distortions due to insufficient epitaxial match, which may lead to bandgap changes, and the second may neglect electron transfer at the interface, which may be important in systems exhibiting very different average electronegativities. This can also imply a spill of electronic density into the vacuum spaces, which will not be present at real interfaces. Herein, both approaches were used to study the BiVO4/NiOOH interface, and the results were compared; the results are here relevant for photoelectrochemistry. The method is based on hybrid Density Functional Theory methods which give for the bulk phases Bandgap values that agree with the experimental ones (in one case, a value reflecting the theoretical value). The distances between the (hybrid DFT-derived) band positions and the corresponding profiles of the Hartree electrostatic potential were transferred to the interfaces. This helps determining the appropriate positions of the valence and conduction bands (as has been suggested by C. G. Van de Walle & R. M. Martin, Phys. Rev. B 1987, 35, 8154). It is ensured that the interfaces are nonpolar (Tasker’s criterion: P.W. Tasker, J. Phys. C: Solid State Phys. 1979, 12, 4977).","PeriodicalId":178524,"journal":{"name":"Catalysis Research","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121646843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Versatility of Supported Gold Nanoparticles on Hydrotalcites used for Oxidation and Reduction Reactions 用于氧化和还原反应的水滑石上负载的金纳米颗粒的多功能性
Catalysis Research Pub Date : 2021-10-25 DOI: 10.21926/cr.2201001
Fabien Drault, Y. Snoussi, Camila P. Ferraz, J. Thuriot-Roukos, S. Heyte, I. I. Júnior, Maya Marinova, S. Paul, R. Wojcieszak
{"title":"Versatility of Supported Gold Nanoparticles on Hydrotalcites used for Oxidation and Reduction Reactions","authors":"Fabien Drault, Y. Snoussi, Camila P. Ferraz, J. Thuriot-Roukos, S. Heyte, I. I. Júnior, Maya Marinova, S. Paul, R. Wojcieszak","doi":"10.21926/cr.2201001","DOIUrl":"https://doi.org/10.21926/cr.2201001","url":null,"abstract":"Regardless of their size, supported gold nanoparticles are largely used for liquid-phase oxidation reactions. Small gold nanoparticles exhibit good performance during the reduction of organic compounds. The direct reduction of carboxylic acid to aldehyde is a famous and familiar reaction in the field of organic chemistry and is considered as one of the fundamental chemical transformations. Herein, we present Au/hydrotalcite, Au/MgO, and Au/Al2O3 systems as heterogeneous versatile catalysts to realize the oxidation of furfural (FF) to furoic acid (FA) and realize the reduction of FA to FF. Experiments showed that in standard aqueous conditions under air, FF can be easily oxidized to FA. When DMSO was used as a solvent to conduct the experiments under an atmosphere of CO2, FA was reduced to FF. The Au/HT series of catalysts was found to be active in both transformations, pointing out the versatility of the gold-based catalysts. The activity significantly depends on the acid-base properties of the catalyst.","PeriodicalId":178524,"journal":{"name":"Catalysis Research","volume":"65 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121744811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Effect of Acid Treatment on the Properties of Zeolite Catalyst for Straight-Run Gasoline Upgrading 酸处理对直馏汽油沸石催化剂性能的影响
Catalysis Research Pub Date : 2021-10-10 DOI: 10.21926/cr.2104004
L. Velichkina, Ya. E. Barbashin, A. Vosmerikov
{"title":"Effect of Acid Treatment on the Properties of Zeolite Catalyst for Straight-Run Gasoline Upgrading","authors":"L. Velichkina, Ya. E. Barbashin, A. Vosmerikov","doi":"10.21926/cr.2104004","DOIUrl":"https://doi.org/10.21926/cr.2104004","url":null,"abstract":"The objective of this research was to analyze the effect of different concentrations of nitric and hydrochloric acids on the structural, acidic, and catalytic properties of a post-synthetic treated ZSM-5 type zeolite at various temperatures. The properties of zeolite catalysts were determined using different methods, such as the Brunauer-Emmett-Teller (BET) method for specific surface area, temperature-programmed desorption (TPD) of ammonia method for acidic properties, and a flow-through unit with fixed bed catalyst (with upgrading straight-run gasoline fraction of oil) for catalytic activities of initial zeolite and acid-treated samples. The structural and acidic properties of both untreated and treated zeolites were investigated, and the effect of acid treatment on the catalytic properties of the samples in the course of upgrading the straight-run gasoline fraction of oil was determined. The post-synthetic treatment with aqueous nitric acid increased the specific surface area and volume of micropores of ZSM-5 zeolite, while the treatment with aqueous hydrochloric acid led to the formation of mesopores. Acid treatments of zeolite decreased the number of acid sites, mainly due to diminished concentration of low-temperature sites. The yield of liquid products in the conversion of straight-run gasoline fraction of oil, i.e., generation of high-octane gasolines with improved environmental features, was increased using acid-treated zeolites, which was due to the decrease in arene content.","PeriodicalId":178524,"journal":{"name":"Catalysis Research","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123547400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Photocatalytic Degradation of Azo Dyes Using Microreactors: Mechanistic Study of its Effects on H2O2 Addition 微反应器光催化降解偶氮染料:对H2O2加成影响的机理研究
Catalysis Research Pub Date : 2021-08-17 DOI: 10.21926/cr.2103002
Y. Murakami, Minato Nakamura
{"title":"Photocatalytic Degradation of Azo Dyes Using Microreactors: Mechanistic Study of its Effects on H2O2 Addition","authors":"Y. Murakami, Minato Nakamura","doi":"10.21926/cr.2103002","DOIUrl":"https://doi.org/10.21926/cr.2103002","url":null,"abstract":"The photocatalytic reaction involved in TiO2 photocatalysis was investigated using a microreactor coated with TiO2 film on the glass plate attached on one side of the microreactor. It was confirmed that the effect of H2O2 on the photocatalytic degradation efficiency of azo dyes (acid orange 7, acid red 151, and acid yellow 23) was dependent on the polymorphs (anatase and rutile) of TiO2 coated on the glass plate of the UV-irradiated microreactor. Scavengers of holes (KI) and electrons (p-benzoquinone) were added to the solution of azo dyes, and their effects on the degradation efficiencies of the azo dye (acid orange 7) in the microreactor system were investigated. It was found that the electron scavengers of p-benzoquinone showed much larger effects on the photocatalytic degradation efficiency than the hole scavengers of KI. Based on these results, the mechanism of the photocatalytic degradation of the azo dyes in the presence of H2O2 was proposed.","PeriodicalId":178524,"journal":{"name":"Catalysis Research","volume":"34 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125519056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stability of a Fe-Rich Cathode Catalyst in an Anion Exchange Membrane Fuel Cell 富铁阴极催化剂在阴离子交换膜燃料电池中的稳定性研究
Catalysis Research Pub Date : 2021-06-09 DOI: 10.21926/cr.2103003
Lin Xie, D. Kirk
{"title":"Stability of a Fe-Rich Cathode Catalyst in an Anion Exchange Membrane Fuel Cell","authors":"Lin Xie, D. Kirk","doi":"10.21926/cr.2103003","DOIUrl":"https://doi.org/10.21926/cr.2103003","url":null,"abstract":"Fe-rich alloys have been widely studied as catalyst materials for the cathodic oxygen reduction reaction (ORR) in hydrogen fuel cells, and many have shown high activities. The stability of Fe-rich catalysts has also been researched, and some studies have shown promising results using an accelerated stress test (AST), which uses a potential cycling method. However, for commercial fuel cell applications, such as standby power systems, the catalyst has to tolerate a high potential for a long period, which can not be represented by the AST test. In this paper, the cathode stability of a Fe-rich catalyst was studied using a standby cell potential of 0.9V, a potential shown to be challenging for the competing Pt catalysts. After 1500 hrs of testing, significant morphology changes of both the tested cathode and anode were found due to a Fe leaching process. Other alloy materials, including Ni, Cr, and Mn, were also found leached out along with the Fe species from the catalyst framework. The results are a cautionary note for using Fe based catalysts for AEMFC cathodes.","PeriodicalId":178524,"journal":{"name":"Catalysis Research","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129895221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of an Efficient Bi-Functional Catalyst made of a Novel Hybrid Material for Rechargeable Zn-Air Battery 可充电锌空气电池用新型混合材料高效双功能催化剂的研制
Catalysis Research Pub Date : 2021-05-24 DOI: 10.21926/cr.2103001
Shiping Wang, G. Bendt, S. Schulz
{"title":"Development of an Efficient Bi-Functional Catalyst made of a Novel Hybrid Material for Rechargeable Zn-Air Battery","authors":"Shiping Wang, G. Bendt, S. Schulz","doi":"10.21926/cr.2103001","DOIUrl":"https://doi.org/10.21926/cr.2103001","url":null,"abstract":"One-pot synthesis of mesoporous hybrid material consisting of Mn-Co/CoO nanoparticles encapsulated in an N-doped graphene shell decorated with Mo2C nanoparticles (Mo2C-NC@Mn-Co/CoO) was reported. The Mn and Mo components synergistically refined the graphitized carbons due to the interactions with N and C atoms while promoting the stability of the Co/CoO nanoparticles. These components exhibited a beneficial effect on the dispersion of the active metal/metal oxide nanoparticles and the formation of a mesoporous structure under high-temperature conditions, which together led to optimized oxygen adsorption/desorption capabilities as well as mass transport properties. The hybrid material showed high bifunctional performance for both oxygen evolution reaction (OER) and oxygen reduction reaction (ORR), as well as promising catalytic properties as the air electrode in a zinc-air battery, featuring superior long-term cycle stability comparable to that of Pt-C/RuO2 materials.","PeriodicalId":178524,"journal":{"name":"Catalysis Research","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127876806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coating Composition on the Basis of Carbamide-PhenolFormaldehyde Co-Oligomer 基于酰胺-酚醛共聚物的涂料组成
Catalysis Research Pub Date : 2021-03-31 DOI: 10.35702/catalres.10001
Naibova Tm, Musazadeh Zm
{"title":"Coating Composition on the Basis of Carbamide-PhenolFormaldehyde Co-Oligomer","authors":"Naibova Tm, Musazadeh Zm","doi":"10.35702/catalres.10001","DOIUrl":"https://doi.org/10.35702/catalres.10001","url":null,"abstract":"","PeriodicalId":178524,"journal":{"name":"Catalysis Research","volume":"94 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115810217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信