可充电锌空气电池用新型混合材料高效双功能催化剂的研制

Shiping Wang, G. Bendt, S. Schulz
{"title":"可充电锌空气电池用新型混合材料高效双功能催化剂的研制","authors":"Shiping Wang, G. Bendt, S. Schulz","doi":"10.21926/cr.2103001","DOIUrl":null,"url":null,"abstract":"One-pot synthesis of mesoporous hybrid material consisting of Mn-Co/CoO nanoparticles encapsulated in an N-doped graphene shell decorated with Mo2C nanoparticles (Mo2C-NC@Mn-Co/CoO) was reported. The Mn and Mo components synergistically refined the graphitized carbons due to the interactions with N and C atoms while promoting the stability of the Co/CoO nanoparticles. These components exhibited a beneficial effect on the dispersion of the active metal/metal oxide nanoparticles and the formation of a mesoporous structure under high-temperature conditions, which together led to optimized oxygen adsorption/desorption capabilities as well as mass transport properties. The hybrid material showed high bifunctional performance for both oxygen evolution reaction (OER) and oxygen reduction reaction (ORR), as well as promising catalytic properties as the air electrode in a zinc-air battery, featuring superior long-term cycle stability comparable to that of Pt-C/RuO2 materials.","PeriodicalId":178524,"journal":{"name":"Catalysis Research","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of an Efficient Bi-Functional Catalyst made of a Novel Hybrid Material for Rechargeable Zn-Air Battery\",\"authors\":\"Shiping Wang, G. Bendt, S. Schulz\",\"doi\":\"10.21926/cr.2103001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One-pot synthesis of mesoporous hybrid material consisting of Mn-Co/CoO nanoparticles encapsulated in an N-doped graphene shell decorated with Mo2C nanoparticles (Mo2C-NC@Mn-Co/CoO) was reported. The Mn and Mo components synergistically refined the graphitized carbons due to the interactions with N and C atoms while promoting the stability of the Co/CoO nanoparticles. These components exhibited a beneficial effect on the dispersion of the active metal/metal oxide nanoparticles and the formation of a mesoporous structure under high-temperature conditions, which together led to optimized oxygen adsorption/desorption capabilities as well as mass transport properties. The hybrid material showed high bifunctional performance for both oxygen evolution reaction (OER) and oxygen reduction reaction (ORR), as well as promising catalytic properties as the air electrode in a zinc-air battery, featuring superior long-term cycle stability comparable to that of Pt-C/RuO2 materials.\",\"PeriodicalId\":178524,\"journal\":{\"name\":\"Catalysis Research\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21926/cr.2103001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21926/cr.2103001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

报道了一锅法制备了Mn-Co/CoO纳米颗粒包裹在以Mo2C纳米颗粒(Mo2C-NC@Mn-Co/CoO)修饰的n掺杂石墨烯壳内的介孔杂化材料。Mn和Mo组分通过与N和C原子的相互作用协同细化了石墨化碳,同时促进了Co/CoO纳米颗粒的稳定性。这些成分对活性金属/金属氧化物纳米颗粒的分散和高温条件下介孔结构的形成都有有益的影响,这共同导致了优化的氧吸附/解吸能力和质量传输性能。该杂化材料具有良好的析氧反应(OER)和氧还原反应(ORR)双功能,作为锌-空气电池空气电极具有良好的催化性能,具有可与Pt-C/RuO2材料相比较的长期循环稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of an Efficient Bi-Functional Catalyst made of a Novel Hybrid Material for Rechargeable Zn-Air Battery
One-pot synthesis of mesoporous hybrid material consisting of Mn-Co/CoO nanoparticles encapsulated in an N-doped graphene shell decorated with Mo2C nanoparticles (Mo2C-NC@Mn-Co/CoO) was reported. The Mn and Mo components synergistically refined the graphitized carbons due to the interactions with N and C atoms while promoting the stability of the Co/CoO nanoparticles. These components exhibited a beneficial effect on the dispersion of the active metal/metal oxide nanoparticles and the formation of a mesoporous structure under high-temperature conditions, which together led to optimized oxygen adsorption/desorption capabilities as well as mass transport properties. The hybrid material showed high bifunctional performance for both oxygen evolution reaction (OER) and oxygen reduction reaction (ORR), as well as promising catalytic properties as the air electrode in a zinc-air battery, featuring superior long-term cycle stability comparable to that of Pt-C/RuO2 materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信