{"title":"Analysis of Climate Variability and Drought Frequency Events on Limpopo River Basin, South Africa","authors":"Sintayehu Legesse Gebre, Yitea Sineshaw Getahun","doi":"10.4172/2157-7587.1000249","DOIUrl":"https://doi.org/10.4172/2157-7587.1000249","url":null,"abstract":"This study has analyzed the climate variability and meteorological drought events over Limpopo River Basin. The Limpopo Basin is shared by four countries, Botswana, South Africa, Zimbabwe, and Mozambique. The total catchment is approximately 408,000 km2. The main governing factor for rainfall patterns in the basin is the movement of the Inter-tropical Convergence Zone (ITCZ). In this study the drought event has been analyzed using standardized precipitation index (SPI). The SPI quantifies the precipitation deficit for multiple time scales and reflects the impact of droughts on the availability of water resources. The long year`s daily average monthly precipitation for the whole area indicates that the precipitation is variable and there is no any clear trend. The relative percentage change of average monthly precipitation of the 1992-2001 compared to 1961-1991 period using WATCH Climate data of the River basin indicates that, a positive value increase in percentage change is observed for the whole months of the year. High magnitude deviation in maximum and minimum temperature in the month of July 2001 observed with respect to 1961-2000 period. 5.2 and 7.9 degree centigrade respectively. The long term SPI analysis indicates that there was an extended accumulated sever dry condition that is prolonged from 1991 up to 1992 over the basin. Generally, this study indicates that there is a frequent meteorological drought events and unpredictable climate variability in the basin. Therefore farmers should take a precaution to adjust their farming system and to overcome drought events for better agricultural productivity.","PeriodicalId":17605,"journal":{"name":"Journal of Waste Water Treatment and Analysis","volume":"1 1","pages":"1-7"},"PeriodicalIF":0.0,"publicationDate":"2016-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83303807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Environmental Flow Assessment in a Lotic Ecosystem of Central Western Ghats, India","authors":"Ramach, ra Tv, S. Vinay, B. Aithal","doi":"10.4172/2157-7587.1000248","DOIUrl":"https://doi.org/10.4172/2157-7587.1000248","url":null,"abstract":"Environmental/Ecological flow refers to the minimum flow of water to be maintained in a water body (river, lake, etc.) to sustain ecosystem services. Understanding environmental flow is important to ensure the local ecological and social (people, agriculture and horticulture, etc.) needs in a sustained and balanced way, while designing large scale projects (such as hydro-electric, river diversion, etc.). Western Ghats are the mountain ranges extending from southern tip of India (Tamil Nadu-Kanyakumari) to Gujarat. These mountain ranges are rich in biodiversity with diverse and endemic flora and fauna, and is birth place to numerous perennial rivers namely Netravathi, Sita, Sharavathi, Aghanashini, Krishna, Cauvery, etc. Western Ghats is often referred as water tower of peninsular India, due to the water and food security provided by the ecosystem through array of services. The region is also one among 35 global biodiversity hotspots. However, deforestation due to large scale land cover changes has affected the water sustenance in the region evident from the quantity and duration of water availability during post monsoon period. Forests in the Western Ghats along with the soil characteristics and precipitation plays a major role in storing water in sub-surface (vadoze and groundwater) zones during monsoon, and releases to the streams during post monsoon periods catering to the needs of the dependent biota including humans. Some of these undisturbed/ unaltered natural flow conditions in rivers and streams have proved their worth with the presence of rich and diverse species and array of ecosystem services, which also has helped in sustaining the livelihood of dependent populations. The undisturbed flow conditions guarantees the natural flow as well as minimum flow in streams to sustain the ecosystem services, which helps in meeting the social and ecological needs. Growing demand to cater the demands of burgeoning human population coupled with accelerated pace of deforestation due to unplanned and senseless developmental projects in the ecologically fragile regions have led the water scarcity even in regions receiving high amount of rainfall. In the current communication an attempt is made to understand the linkages between the hydrological dynamics across varied landscape with the anthropogenic and ecological water needs. If the available water resource meets the societal and environmental demands across seasons, the catchment is said to achieve the minimum flow requirements. The federal government has plans to divert the water from rivers in Western Ghats region to the dry arid regions in Karnataka. In this regard, environmental flow assessment of Yettinahole river in Central Western Ghats is carried out to understand the feasibility of river diversion through the assessment of hydrologic regime with the analysis of land use dynamics (using remote sensing data), meteorological data (rainfall, temperature, etc. from IMD, Pune), hydrological data (f","PeriodicalId":17605,"journal":{"name":"Journal of Waste Water Treatment and Analysis","volume":"18 1","pages":"1-14"},"PeriodicalIF":0.0,"publicationDate":"2016-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90146308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Watershed Response to Bias-Corrected Improved Skilled Precipitation and Temperature under Future Climate - A Case Study on Spencer Creek Watershed, Ontario, Canada","authors":"Sadik Ahmed, I. Tsanis","doi":"10.4172/2157-7587.1000246","DOIUrl":"https://doi.org/10.4172/2157-7587.1000246","url":null,"abstract":"It is widely acknowledged that the statistical properties of precipitation and temperature will change under the future climate condition, and this will cause a significant impact on water resources and its management at watershed scale. This study investigated the hydrological response to climate change for Spencer Creek watershed located in Southern Ontario, Canada. The precipitation and temperature projection used in this study were obtained from the North American Regional Climate Change Assessment Program (NARCCAP) climate simulations. NARCCAP climate projections were bias- corrected for meteorological stations representative of the watershed. The biascorrected NARCCAP climate projections were used as input in a calibrated hydrological model Hydrologiska Byrans Vattenbalans-avdelning (HBV) to simulate flows at the outlet of the watershed. The improvement of bias-corrected NARCCAP precipitation and temperature is revealed by Brier and Rank Probability Skill Score (BSS and RPSS, respectively). The comparison of current and future simulated flow results reveals an increase in winter daily average flows and decrease in other seasons, and approximately 13% increase in annual evapotranspiration under future climate condition. An increase in high flows and decrease in low flows under future climate is revealed by flowduration analysis.","PeriodicalId":17605,"journal":{"name":"Journal of Waste Water Treatment and Analysis","volume":"26 1","pages":"1-12"},"PeriodicalIF":0.0,"publicationDate":"2016-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84710409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"To Study Hydrogeology and Wetland-Groundwater Interactions around Sukhna Wetland, Chandigarh, India","authors":"Jasbir Kaur Taak, K. Singh, Ahluwalia As","doi":"10.4172/2157-7587.1000244","DOIUrl":"https://doi.org/10.4172/2157-7587.1000244","url":null,"abstract":"In the present paper the hydrological regime around Sukhna wetland is studied to know how a wetland is functioning, its influence on hydrology of the area and wetland-groundwater interactions. The subsurface geology of boreholes drilled around Sukhna wetland reveals thick zones of boulders, pebbles, gravels, sand and clay at different depths. In this area there are two type aquifer systems i.e., shallow and deep. The depth for shallow aquifer ranged 2-20 m bgl and in deeper aquifers ranged 10 above 40 m bgl. The water level fluctuations for the period 1985-2013, indicates the declining water level trend in both the seasons i.e., pre monsoon (May) and post monsoon (November) due to over exploitation by tubewells installed by the Public Health Department, UT, Chandigarh for providing domestic water supply. The water table elevation contour maps for May and November months in Chandigarh for years 1986, 1991, 1999, 2005 and 2012 reveals that the regional ground water flow direction is from Northeast to Southwest and there in no significant temporal variations in regional ground water flow direction. On the basis of hydrological regime study around Sukhna wetland it is inferred that no appreciable rise in water levels has been observed around Sukhna wetland but it is contributing recharge in the upper shallow aquifer system in the central part of Chandigarh and below as the subsurface groundwater flow is towards south and south west direction","PeriodicalId":17605,"journal":{"name":"Journal of Waste Water Treatment and Analysis","volume":"78 1","pages":"1-6"},"PeriodicalIF":0.0,"publicationDate":"2016-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87912048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multi-Regression Prediction of Metal Partition Coefficients under Various Physical/Chemical Conditions“Design of Experiments As, Cr, Cu, Ni and Zn”","authors":"E. Alkhatib, Danielle Grunzke, T. Chabot","doi":"10.4172/2157-7587.1000241","DOIUrl":"https://doi.org/10.4172/2157-7587.1000241","url":null,"abstract":"The behavior of metals in surface water is complex and their partition coefficients can be impacted by many factors. Organic matter (OM) content in sediments, pH and salinity, are factors that may influence speciation and partitioning of metals. The difficulty in describing the impacts and relationships are that these processes are interconnected with no dominant associations among all. In this study, the partitioning of five metals (As, Cr, Cu, Ni and Zn) under different levels of salinity, pH, and OM content were investigated. A series of factorial design experiments are evaluated in which three levels of OM are tested each time against five levels each of salinity and pH; the design of experiments was generated by the statistical software program MiniTab16®. All metals tested showed a trend of increasing Kd with the increase of OM 0.36% to 4.32%. Higher Kd were the result of the increase in pH from 3-10.5 and lower Kd values resulted after an increase in salinity 0-3%. However, within that lower range of salinity, a positive linear correlation between Kd and salinity was observed which is attributed to potential formation of insoluble metal species with the increase of salinity. Multiple regression equations with the variables pH, OM and salinity were generated to predict Kd of each metal. The study showed no interaction between salinity/OM and pH/OM for all five metals.","PeriodicalId":17605,"journal":{"name":"Journal of Waste Water Treatment and Analysis","volume":"11 1","pages":"1-7"},"PeriodicalIF":0.0,"publicationDate":"2016-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86869733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Groundwater and Poverty Reduction: Challenges and Opportunities for Sustainable Development in Nigeria","authors":"Nwankwoala Ho","doi":"10.4172/2157-7587.1000240","DOIUrl":"https://doi.org/10.4172/2157-7587.1000240","url":null,"abstract":"Water is essential for life and for most activities of human society. Both economic and social development and the maintenance of human health are completely dependent upon ready access to adequate water supplies. All societies require water both for basic survival and for economic development. Limited and inadequate access to water supply for productive uses such as livestock watering, crop irrigation, and small scale industries, constraints households and communities in a condition of vulnerability and poverty. Lack of access to safe domestic, and indeed to significant quantities of water for other productive uses defines and contributes to poverty. Provision of and access to safe domestic water for productive uses will contribute to the Millennium Development target of halving the proportion of people without access to safe and sustainable water supplies by 2015, in addition to contributing significantly to incomes and livelihoods. Groundwater resources thus offer major development of communities. Great socio-economic benefits have been generated by high-quality, relatively low-cost, drought-resilient groundwater supplies for urban expansion, industrial enterprises and agricultural irrigation and with rising population and continuing development in Nigeria, demand for groundwater is still increasing. This paper, therefore opines that it is not simply a matter of having a low or irregular income, but of lacking a wider set of assets-human, social, physical, natural as well as financial and being vulnerable to changes which the less-poor can readily survive. This paper therefore aims at promoting water poverty to water prosperity, outlining and exploring the opportunities and role of groundwater in the reduction of chronic poverty, economic sustainability as well as draws out conclusion for the way forward in Nigeria. The contribution of groundwater to the enhancement of livelihood and in the fight to combat poverty, reduce vulnerability and improve chances of survival is advocated. Overall, groundwater is and will be a reliable water resource for human development for solving water supply issues, improvement in human health conditions and alleviation of poverty.","PeriodicalId":17605,"journal":{"name":"Journal of Waste Water Treatment and Analysis","volume":"29 1","pages":"1-8"},"PeriodicalIF":0.0,"publicationDate":"2016-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84876726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohammed Amine Kendouci, B. Kharroubi, A. Maazouzi, A. Bendida
{"title":"Variation in the Quality of Treated Wastewater by Local Sand Filter: The Case of the Algerian Sahara Sand","authors":"Mohammed Amine Kendouci, B. Kharroubi, A. Maazouzi, A. Bendida","doi":"10.4172/2157-7587.1000247","DOIUrl":"https://doi.org/10.4172/2157-7587.1000247","url":null,"abstract":"In urban areas, population growth generates significant amounts of wastewater that is treated in sewage treatment plants specialize or reject directly controlling interest in the natural environment. Many scientists are looking into the issue to try to find solutions to clean water and make it drinkable. We are interested in the technique of sand filtration (in the region southwest of Algeria), as an essential phase for the treatment of wastewater, such methods are known to be well suited to rural areas, since they have a good quality of treatment, a relatively simple operation and low maintenance. The method is based on the following principle: a slow filtration, water passes under a constant hydraulic load (30 cm water) the filter bed (60 cm of sand), the hydraulic load is kept constant during the experiment. A physicochemical analysis is performed on the water sample before and after filtration, the filter bed to give us a discount of around 50% in the levels of contaminant parameters such as NTK, Ammonium, Nitrate, and Nitrite. The reduction of BOD, COD and suspended solids is about 90%. It was observed a significant increase in the potassium from 33.19 mg/l to 99.89 mg/l.","PeriodicalId":17605,"journal":{"name":"Journal of Waste Water Treatment and Analysis","volume":"36 1","pages":"1-5"},"PeriodicalIF":0.0,"publicationDate":"2016-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74807955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Simulation of the Runoff in a Short-Term Scale and Assessing the Hydrologic Effects of Climate Change in the Zarinerood Basin (As Part of the Orumyeh Lake Great Basin)","authors":"M. Seyedielmabad","doi":"10.4172/2157-7587.1000230","DOIUrl":"https://doi.org/10.4172/2157-7587.1000230","url":null,"abstract":"Snowmelt has a significant effect on rivers outflow in Western Iran. Occasionally, in some areas about 90% of runoff result from melting snow. Access to accurate and timely information for measuring the volume of available water resources is necessary. It is important to plan and design programs for drought-resistance and flood prevention as fundamental issues in Iran. The water balance (WB) model was used to estimate daily runoff produced by melting snow, without reliance to satellite images, from October to February (2005-2006) in the Zarinerood basin. This model uses available data and information in the basin to provide the possibility of estimating daily runoff in the short-term. For this purpose, the watershed was divided into three elevation zones and in each zone, an index station was determined. Using the water balance model, runoff was estimated from each station producing the outlet runoff in the basin. To calculate model accuracy, the correlation coefficient (R2) and root mean square error (RMSE) were estimated as 0.62 and 0.003, respectively. These results showed that the accuracy of the model to estimate daily runoff was acceptable. Therefore, the calibration of this model endorses its use in similar basins. It has been shown that increasing temperature has affected on snow-melt period as shifting it from spring and early summer to winter in North-west Iran. It results to increasing runoff rates in the snow-melt season and therefore this region encounters intensive drought and flood.","PeriodicalId":17605,"journal":{"name":"Journal of Waste Water Treatment and Analysis","volume":"1 1","pages":"1-6"},"PeriodicalIF":0.0,"publicationDate":"2016-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88789222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Winter Precipitation and Snowpack-melt with Temperature and Elevation at Solang Valley, India","authors":"An, Verdhen, Chahar Br, Sharma Op","doi":"10.4172/2157-7587.1000245","DOIUrl":"https://doi.org/10.4172/2157-7587.1000245","url":null,"abstract":"Knowledge about variability of temperature, precipitation, snowpack and snowmelt with temperature and elevation are essential to prepare input data for hydrological models. The study presents characteristics and variability of these input variables during springtime at three elevations (Bhang, Solang and Dhundi stations in the Solang Valley of the western Himalaya) with respect to mean temperature (Tm) at Bhang using weekly data within a period of 27 years with initial (1982 and 1983) and later (2008 and 2009) consecutive years including decadal years 1993 and 2003. Methodology comprises of process integration using regression, simulation, cluster analysis, transformation, projection and inter-annual comparison. Study shows that temperature lapse rate (TLR) in stretches between snow-free to snow cover area (1.2°C/100 m) is more than the TLR in stretch of continued snow cover. Temperature, snowfall, rainfall and snow depth per 100 m of rise in elevation have been estimated as -1.09°C, 31.2 cm, -7.72 mm and 27.95 cm, respectively. The snowfall and rainfall mixed precipitation occurs within 0.65 and 11.5°C of weekly Tm for which distribution pattern has been developed. Temperature degree-day melt factors, determined in water equivalent term, vary between 2 and 11.5 mm°C-1d-1 and it may rise up to 13 mm°C-1d-1 for non-zero snow condition. The snow depth excess at Solang (2450 m amsl) in relation to Bhang (2190 m) has reduced by 50% over three decades while the snow depth excess at Dhundi (2950 m) from the snow depth at Bhang has increased by 15%. Furthermore, disappearance of the snow cover has been experienced earlier by 5 weeks in the region.","PeriodicalId":17605,"journal":{"name":"Journal of Waste Water Treatment and Analysis","volume":"15 1","pages":"1-11"},"PeriodicalIF":0.0,"publicationDate":"2016-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84893412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Transpiration in 15 Tree Species Grown on a Phytocapped Landfill Site","authors":"K. Venkatraman, N. Ashwath","doi":"10.4172/2157-7587.1000236","DOIUrl":"https://doi.org/10.4172/2157-7587.1000236","url":null,"abstract":"An alternative landfill capping technique ‘Phytocapping’ (establishing plants on a layer of soil placed over the waste) was trialled at Rockhampton, Australia. In this capping trees act as ‘bio-pumps and ‘rain interceptors’ and soil cover as ‘storage’. They together minimise water percolation leading to reduced leachate production. “Transpiration” is a vital process to maintain the hydrological balance of a particular site. To be successful, the trees must transpire enough water from the soil so as to reduce water percolation through the refuse. Water uptake in trees is influenced by plant growth, tree characteristics, root activities, soil depth, soil water availability as well as climatic conditions (rainfall intensity, wind velocity, relative humidity and temperature). The potential of the tree species to remove water from the system plays a vital role in the sustainability of phytocapping system. Currently very little information is available on water uptake patterns of native species established on landfill sites. Results from this study suggest that the tree species grown on a phytocap are able to take up to 2.1 mm day-1 of water with an average of 1.4 mm day-1.","PeriodicalId":17605,"journal":{"name":"Journal of Waste Water Treatment and Analysis","volume":"37 1","pages":"1-13"},"PeriodicalIF":0.0,"publicationDate":"2016-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76687153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}