{"title":"Structural basis of different neutralization capabilities of monoclonal antibodies against H7N9 virus.","authors":"Bingbing Zhao, Zhenzhao Sun, Shida Wang, Zhibin Shi, Yongping Jiang, Xiurong Wang, Guohua Deng, Peirong Jiao, Hualan Chen, Jingfei Wang","doi":"10.1128/jvi.01400-24","DOIUrl":"https://doi.org/10.1128/jvi.01400-24","url":null,"abstract":"<p><p>Neutralizing antibodies (nAbs) are important for the treatment of emerging viral diseases and for effective vaccine development. In this study, we generated and evaluated three nAbs (1H9, 2D7, and C4H4) against H7N9 influenza viruses and found that they differ in their ability to inhibit viral attachment, membrane fusion, and egress. We resolved the cryo-electron microscopy (cryo-EM) structures of H7N9 hemagglutinin (HA) alone and in complex with the nAb antigen-binding fragments (Fabs) and identified the HA head-located epitope for each nAb, thereby revealing the molecular basis and key residues that determine the differences in these nAbs in neutralizing H7N9 viruses. Moreover, we found that the humanized nAb CC4H4 provided complete protection in mice against death caused by a lethal H7N9 virus infection, even when nAb was given 3 days after the mice were infected. These findings provide new insights into the neutralizing mechanism and structural basis for the rational design of H7N9 virus vaccines and therapeutics.IMPORTANCEH7N9 viruses have caused severe infections in both birds and humans since their emergence in early 2013 in China. Their persistent presence and variation in avian populations pose a significant threat to both poultry and humans. There are no treatments for human infections. In this study, we thoroughly investigated the neutralization mechanisms, structural basis, and therapeutic effects of three nAbs (1H9, 2D7, and C4H4) against H7N9 viruses. We revealed the molecular determinants underlying the varied performances of the three nAbs in neutralizing H7N9 viruses and protecting H7N9-infected mice. These insights provide a solid foundation for the rational design of vaccines and therapeutics against H7N9 viruses.</p>","PeriodicalId":17583,"journal":{"name":"Journal of Virology","volume":" ","pages":"e0140024"},"PeriodicalIF":4.0,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142864727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jing Zheng, Hao Xiao, Hao Pang, Li Wang, Jingdong Song, Wenyuan Chen, Lingpeng Cheng, Hongrong Liu
{"title":"Conformational changes in and translocation of small proteins: insights into the ejection mechanism of podophages.","authors":"Jing Zheng, Hao Xiao, Hao Pang, Li Wang, Jingdong Song, Wenyuan Chen, Lingpeng Cheng, Hongrong Liu","doi":"10.1128/jvi.01249-24","DOIUrl":"https://doi.org/10.1128/jvi.01249-24","url":null,"abstract":"<p><p>Podophage tails are too short to span the cell envelope during infection. Consequently, podophages initially eject the core proteins within the head for the formation of an elongated trans-envelope channel for DNA ejection. Although the core proteins of bacteriophage T7 have been resolved at near-atomic resolution, the mechanisms of core proteins and DNA ejection remain to be fully elucidated. In this study, we provided improved structures of core proteins in mature T7 and the portal-tail complex in lipopolysaccharide-induced DNA-ejected T7 to resolutions of approximately 3 Å. Using these structures, we identified three small proteins, namely gp14, gp6.7, and gp7.3, and illustrated the conformational changes in and translocation of these proteins from the mature to DNA-ejected states. Our structures indicate that gp6.7, which participates in the assembly of the core and trans-envelope channel, is a core protein, and that gp7.3 serves as a structural scaffold to assist the assembly of the nozzle into the adaptor.</p><p><strong>Importance: </strong>Podophage T7 core proteins form an elongated trans-envelope channel for genomic DNA delivery into the host cell. The structures of the core proteins within the mature T7 and assembled in the periplasmic tunnel form in the DNA-ejected T7 have been resolved previously. Here, we resolved the structures of two new structural proteins (gp6.7 and gp7.3) within mature T7 and receptor-induced DNA-ejected T7. The gp6.7 protein participates in the assembly of the core complex within mature T7 and the trans-envelope channel during T7 infection; therefore, gp6.7 is a core protein. Before T7 infection, gp7.3 plays a role in promoting the assembly of the nozzle into the adaptor.</p>","PeriodicalId":17583,"journal":{"name":"Journal of Virology","volume":" ","pages":"e0124924"},"PeriodicalIF":4.0,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142864724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zeng Cai, Wenjia Ni, Wenkang Li, Zhixuan Wu, Xiaoqian Yao, Yucheng Zheng, Yongliang Zhao, Weifeng Yuan, Simeng Liang, Qi Wang, Mingliang Tang, Yu Chen, Ke Lan, Li Zhou, Ke Xu
{"title":"SARS-CoV-2 S protein disrupts the formation of ISGF3 complex through conserved S2 subunit to antagonize type I interferon response.","authors":"Zeng Cai, Wenjia Ni, Wenkang Li, Zhixuan Wu, Xiaoqian Yao, Yucheng Zheng, Yongliang Zhao, Weifeng Yuan, Simeng Liang, Qi Wang, Mingliang Tang, Yu Chen, Ke Lan, Li Zhou, Ke Xu","doi":"10.1128/jvi.01516-24","DOIUrl":"https://doi.org/10.1128/jvi.01516-24","url":null,"abstract":"<p><p>Viral immunosuppression substantially affects the host immune response of infected patients and the protective efficacy of vaccines. Here, we found that the spike (S) protein, the major vaccine antigen of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), strongly suppresses host innate immunity by inhibiting interferon-stimulated gene (ISG) expression through both S1 and S2 subunits. Mechanistically, the S protein inhibited the formation of the classic interferon-stimulated gene factor 3 (ISGF3) complex composed of STAT1, STAT2, and IRF9 by competing with STAT2 for binding to IRF9, thereby impeding the transcription of ISGs. A strong interaction between S and the STAT1/STAT2 proteins further traps the ISGF3 complex in the endoplasmic reticulum and hinders the nuclear translocation of ISGF3. Notably, the interferon-inhibitory mechanism of the S protein was universal among SARS-CoV-2 variants and other human coronaviruses, including SARS-CoV, Middle East respiratory syndrome coronavirus (MERS-CoV), human coronavirus 229E (HCoV-229E), human coronavirus NL63 (HCoV-NL63), and human coronavirus HKU1 (HCoV-HKU1), through the most evolutionarily conserved region of S2 subunit. Taken together, the findings of this study reveal a new mechanism by which the coronavirus S protein attenuates the host antiviral immune response and provides new insights into the proper design of coronavirus S-based vaccines to prevent immunosuppressive effects.</p><p><strong>Importance: </strong>This study unveils a new mechanism by which the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein attenuates the host's antiviral immune response. The interferon-inhibitory mechanism of the S protein was universal among SARS-CoV-2 variants and other human coronaviruses, including SARS-CoV, MERS-CoV, HCoV-229E, HCoV-NL63, and HCoV-HKU1, through conserved S2 domains. Our study expands the understanding of SARS-CoV-2 and other human coronaviruses in evading antiviral immune strategies, which is very important for the design and optimization of vaccine antigens, thus providing a theoretical basis for human anti-coronavirus immunity and understanding the interaction between the host and coronavirus.</p>","PeriodicalId":17583,"journal":{"name":"Journal of Virology","volume":" ","pages":"e0151624"},"PeriodicalIF":4.0,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142853305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mikayla Hoad, Sepehr Nematollahzadeh, Gayle F Petersen, Justin A Roby, Gualtiero Alvisi, Jade K Forwood
{"title":"Structural basis for nuclear import of adeno-associated virus serotype 6 capsid protein.","authors":"Mikayla Hoad, Sepehr Nematollahzadeh, Gayle F Petersen, Justin A Roby, Gualtiero Alvisi, Jade K Forwood","doi":"10.1128/jvi.01345-24","DOIUrl":"https://doi.org/10.1128/jvi.01345-24","url":null,"abstract":"<p><p>Adeno-associated viruses (AAVs) are the most extensively researched viral vectors for gene therapy globally. The AAV viral protein 1 (VP1) N-terminus controls the capsid's ability to translocate into the cell nucleus; however, the exact mechanism of this process is largely unknown. In this study, we sought to elucidate the precise interactions between AAV serotype 6 (AAV6), a promising vector for immune disorders, and host transport receptors responsible for vector nuclear localization. Focusing on the positively charged basic areas within the N-terminus of AAV6 VP1, we identified a 53-amino acid region that interacts with nuclear import receptors. We measured the binding affinities between this region and various nuclear import receptors, discovering a notably strong interaction with IMPα5 and IMPα7 in the low nanomolar range. We also elucidated the X-ray crystal structure of this region in complex with an importin alpha (IMPα) isoform, uncovering its binding as a bipartite nuclear localization signal (NLS). Furthermore, we show that using this bipartite NLS, AAV6 VP1 capsid protein can localize to the nucleus of mammalian cells in a manner dependent on the IMPα/IMPβ nuclear import pathway. This study provides detailed insights into the interaction between the AAV6 VP1 capsid protein and nuclear import receptors, deepening our knowledge of AAV nuclear import mechanisms and establishing a basis for the improvement of AAV6-based gene therapy vectors.IMPORTANCEAAVs, recognized as the most extensively researched viral vectors for gene therapy globally, offer significant advantages over alternatives due to their small size, non-pathogenic nature, and innate ability for tissue-specific targeting. AAVs are required to localize to the nucleus to perform their role as a gene therapy vector; however, the precise mechanisms that facilitate this process remain unknown. Despite sharing overt genomic similarities with AAV1 and AAV2, AAV6 is a unique serotype. It is currently recognized for its ability to effectively transduce hematopoietic cell lineages and, consequently, is considered promising for the treatment of immune disorders. Identifying the exact mechanisms that permit AAV6 to access the nucleus can open up new avenues for gene therapy vector engineering, which can ultimately lead to increased therapeutic benefits.</p>","PeriodicalId":17583,"journal":{"name":"Journal of Virology","volume":" ","pages":"e0134524"},"PeriodicalIF":4.0,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142846848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Tannic acid reactivates HIV-1 latency by mediating CBX4 degradation.","authors":"Cancan Chen, Zhihan Zhong, Wanying Zhang, Baijin Xia, Liyang Wu, Liting Liang, Yiwen Zhang, Hui Zhang, Xu Zhang, Ting Pan, Linghua Li, Bingfeng Liu","doi":"10.1128/jvi.01173-24","DOIUrl":"https://doi.org/10.1128/jvi.01173-24","url":null,"abstract":"<p><p>HIV-1 can integrate viral DNA into host cell chromosomes and establish a long-term stable latent viral reservoir, a major obstacle in curing HIV-1 infection. The reactivation of latent proviruses with latency-reversing agents (LRAs) is a prerequisite for the eradication of viral reservoirs. Previous reports have shown that tannic acid (TA) exerts several biological functions, including antioxidant and antitumor activities. Here, we identified a novel function of TA as a reactivator of HIV-1 latency. TA showed similar features to the HIV-1 transactivator of transcription (Tat) and was able to reactivate a larger number of proviruses from various integration sites. TA also showed a strong synergistic effect with other LRAs acting on different signaling pathways. Further studies revealed that the polycomb repressive complex 1 component, chromobox protein homolog 4 (CBX4), is specifically degraded by TA through ubiquitination. CBX4 is associated with the tri-methylation at lysine 27 of histone H3 (H3K27me3) which was enriched on HIV-1 long terminal repeat regions. The TA-induced CBX4 degradation decreased the H3K27me3 enrichment and subsequently enhanced the transcriptional activity of the integrated proviruses. These results suggest that TA is an efficient LRA aiming to a new target for HIV-1 latency, which could be developed to eradicate latent proviruses.IMPORTANCEHIV-1 remains a global health challenge, with its ability to integrate into the host genome and evade the effects of drugs. To overcome this obstacle, the \"shock and kill\" strategy was proposed, targeting the reactivation of latent HIV-1 for subsequent eradication through antiretroviral medication and immune system reinforcement. Here, we found a new reactivator for HIV-1 latency, tannic acid (TA), which can reactivate HIV-1 latency widely and deeply. Moreover, we demonstrated that TA could promote the interaction between the polycomb repressive complex 1 component CBX4 and the E3 ubiquitin ligase cullin 4A (CUL4A), resulting in CBX4 degradation through the ubiquitin-proteasome system. These events reduce H3K27me3 enrichment in the HIV-1 long terminal repeat region, thereby promoting HIV-1 transcription and ultimately reactivating HIV-1 latent infection. Our work may facilitate the identification of new latency-reversing agents and provide more theoretical evidence for the molecular mechanism of HIV-1 latency.</p>","PeriodicalId":17583,"journal":{"name":"Journal of Virology","volume":" ","pages":"e0117324"},"PeriodicalIF":4.0,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142846854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Journal of VirologyPub Date : 2024-12-17Epub Date: 2024-11-04DOI: 10.1128/jvi.00832-24
Christian S Stevens, Jillian C Carmichael, Ruth Watkinson, Shreyas Kowdle, Rebecca A Reis, Kory Hamane, Jason Jang, Arnold Park, Olivier Pernet, Wannisa Khamaikawin, Patrick Hong, Patricia Thibault, Aditya Gowlikar, Dong Sung An, Benhur Lee
{"title":"A temperature-sensitive and less immunogenic Sendai virus for efficient gene editing.","authors":"Christian S Stevens, Jillian C Carmichael, Ruth Watkinson, Shreyas Kowdle, Rebecca A Reis, Kory Hamane, Jason Jang, Arnold Park, Olivier Pernet, Wannisa Khamaikawin, Patrick Hong, Patricia Thibault, Aditya Gowlikar, Dong Sung An, Benhur Lee","doi":"10.1128/jvi.00832-24","DOIUrl":"10.1128/jvi.00832-24","url":null,"abstract":"<p><p>The therapeutic potential of gene editing technologies hinges on the development of safe and effective delivery methods. In this study, we developed a temperature-sensitive and less immunogenic Sendai virus (ts SeV) as a novel delivery vector for CRISPR-Cas9 and for efficient gene editing in sensitive human cell types with limited induction of an innate immune response. ts SeV demonstrates high transduction efficiency in human CD34<sup>+</sup> hematopoietic stem and progenitor cells (HSPCs) including transduction of the CD34<sup>+</sup>/CD38<sup>-</sup>/CD45RA<sup>-</sup>/CD90<sup>+</sup>(Thy1<sup>+</sup>)/CD49f<sup>high</sup> stem cell enriched subpopulation. The frequency of <i>CCR5</i> editing exceeded 90% and bi-allelic <i>CCR5</i> editing exceeded 70% resulting in significant inhibition of HIV-1 infection in primary human CD14<sup>+</sup> monocytes. These results demonstrate the potential of the ts SeV platform as a safe, efficient, and flexible addition to the current gene-editing tool delivery methods, which may help further expand the possibilities in personalized medicine and the treatment of genetic disorders.</p><p><strong>Importance: </strong>Gene editing has the potential to be a powerful tool for the treatment of human diseases including HIV, β-thalassemias, and sickle cell disease. Recent advances have begun to overcome one of the major limiting factors of this technology, namely delivery of the CRISPR-Cas9 gene editing machinery, by utilizing viral vectors. However, gene editing therapies have yet to be implemented due to inherent risks associated with the DNA viral vectors typically used for delivery. As an alternative strategy, we have developed an RNA-based Sendai virus CRISPR-Cas9 delivery vector that does not integrate into the genome, is temperature sensitive, and does not induce a significant host interferon response. This recombinant SeV successfully delivered CRISPR-Cas9 in primary human CD14+ monocytes <i>ex vivo</i> resulting in a high level of CCR5 editing and inhibition of HIV infection.</p>","PeriodicalId":17583,"journal":{"name":"Journal of Virology","volume":" ","pages":"e0083224"},"PeriodicalIF":4.0,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11650993/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142569049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Journal of VirologyPub Date : 2024-12-17Epub Date: 2024-11-05DOI: 10.1128/jvi.00297-24
Honggen Yuan, Yun Luo, Jiahui Zou, Junmei Zhang, Jinhua Zhang, Gang Cao, Shengbo Cao, Huanchun Chen, Yunfeng Song
{"title":"Cellular NONO protein binds to the flavivirus replication complex and promotes positive-strand RNA synthesis.","authors":"Honggen Yuan, Yun Luo, Jiahui Zou, Junmei Zhang, Jinhua Zhang, Gang Cao, Shengbo Cao, Huanchun Chen, Yunfeng Song","doi":"10.1128/jvi.00297-24","DOIUrl":"10.1128/jvi.00297-24","url":null,"abstract":"<p><p>A cellular protein, non-POU-domain-containing octamer binding protein (NONO), bound to the replication complex of Japanese encephalitis virus (JEV) by directly interacting with the viral 3' UTR RNA and NS3 protein. These interactions were also identified in West Nile virus (WNV) and Zika virus (ZIKV). The infection of JEV or the expression of JEV NS3 protein in cells could induce relocation of NONO protein from the nucleus to the cytoplasm. In JEV-infected cells, the NS3, NS5, and viral RNA could be concurrently detected in the immunoprecipitation by the NONO-specific antibody, suggesting that NONO could integrate into the replication complex of JEV. Further results of co-immunoprecipitation assays showed that NONO protein interacted with NS3 helicase domains 1 and 2 by its two RNA recognize motifs (RRMs). The knockdown and knockout of NONO in cells could significantly reduce the replication of JEV and ZIKV but had no effect on the replication of vesicular stomatitis virus (VSV). The effect of NONO protein on JEV proliferation occurred during the replication stage, rather than the attachment and entry stages. The level of viral positive-strand RNA in NONO knockout cells was significantly reduced than that in wild-type cells at 12-48 h post-JEV infection. However, the level of negative-strand virus RNA had no difference between NONO knockout and wild-type cells at 12-24 h post-infection. In summary, our study identified a cellular protein that bound to the replication complex of flavivirus and facilitated the synthesis of positive-strand RNA.IMPORTANCEOver half of the world's population is at risk of flaviviruses infection, posing a serious global health concern. To date, there are no antiviral drugs or treatments for the severe symptoms caused by the infection of flaviviruses. Some cellular proteins could participate in the replication of virus, and these cellular proteins were also ideal targets in antiviral strategy. Here, we identified cellular NONO protein was recruited by flavivirus NS3 protein to the cytoplasm, serving as a \"scaffold\" for viral replication complex. Our findings also revealed that NONO protein was critical for flavivirus positive-strand RNA synthesis. Specific areas where NONO interacted with flavivirus NS3 proteins and viral UTRs have also been identified. These results propose a new mechanism for cellular protein to participate in flavivirus replication and also raise a new potential anti-flavivirus strategy.</p>","PeriodicalId":17583,"journal":{"name":"Journal of Virology","volume":" ","pages":"e0029724"},"PeriodicalIF":4.0,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11650977/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142583778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Novel virulence determinants in VP1 regulate the assembly of enterovirus-A71.","authors":"Wenjing Zhang, Quanjie Li, Dongrong Yi, Ruifang Zheng, Guihua Liu, Qian Liu, Saisai Guo, Jianyuan Zhao, Jing Wang, Ling Ma, Jiwei Ding, Rui Zhou, Yongcheng Ren, Tingting Sun, Ao Zhang, Xiaoyu Li, Yongxin Zhang, Shan Cen","doi":"10.1128/jvi.01655-24","DOIUrl":"10.1128/jvi.01655-24","url":null,"abstract":"<p><p>Enterovirus-A71 (EV-A71) is the second most common causative agent after coxsackievirus A16 of hand, foot, and mouth disease. The capsids of EV-A71 consist of 60 copies of each of the four viral structural proteins (VP1-VP4). VP1 is highly exposed and surface accessible, playing a central role in virus particle assembly, attachment, and entry. To gain insight into the role of highly conserved residues at positions 75, 78, and 88 in the capsid protein VP1 in these processes, an alanine-scanning analysis was performed using an infectious cDNA clone of EV-A71. Our study revealed that the substitutions of VP1-T75A, VP1-T78A, and VP1-G88A could affect the assembly of the virus capsid proteins, resulting in the production of abnormal virions with reduced infectivity. Specifically, the substitution of VP1-T75A affected the maturation cleavage of the VP0 precursor, leading to deficiencies in binding to receptor scavenger receptor class B2 (SCARB2), viral attachment, internalization, and even uncoating. For the mutants of T78A and G88A, a significant reduction in virion-associated genomic RNA was observed, suggesting that more noninfectious empty particles were produced during viral assembly. Interestingly, the VP1-T75A variant showed weak replication in cell cultures but demonstrated increased virulence in BALB/c neonatal mice, which might be due to the difference in viral receptors among mammalian species. Taken together, our data revealed the important role of the highly conserved residues T75, T78, and G88 in VP1 protein in the infectivity of EV-A71. Characterizing these novel determinants of EV-A71 virulence would contribute to rationally developing effective treatments and broadly protective vaccine candidates.</p><p><strong>Importance: </strong>EV-A71 causes hand, foot, and mouth disease in children. In this study, we discovered three highly conserved residues at positions 75, 78, and 88 of the capsid protein VP1 as the potential virulence determinants of EV-A71, which can influence viral replication by regulating the assembly of EV-A71. Mechanistic studies revealed that VP1-T75A could affect the maturation cleavage of the VP0 precursor, resulting in deficiencies in binding to the receptor SCARB2, viral attachment, internalization, and even uncoating. For the mutants of T78A and G88A, more noninfectious empty particles were produced during viral assembly. The discovery of these novel determinants of EV-A71 virulence will promote the study of the pathogenesis of enteroviruses.</p>","PeriodicalId":17583,"journal":{"name":"Journal of Virology","volume":" ","pages":"e0165524"},"PeriodicalIF":4.0,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11650969/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142622794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Journal of VirologyPub Date : 2024-12-17Epub Date: 2024-11-04DOI: 10.1128/jvi.01223-24
Saskia C Stein, Guido Hansen, George Ssebyatika, Luisa J Ströh, Okechukwu Ochulor, Elisabeth Herold, Britta Schwarzloh, Doris Mutschall, Jasmin Zischke, Anne K Cordes, Talia Schneider, Imke Hinrichs, Rainer Blasczyk, Hannah Kleine-Weber, Markus Hoffmann, Florian Klein, Franziska K Kaiser, Mariana Gonzalez-Hernandez, Federico Armando, Malgorzata Ciurkiewicz, Georg Beythien, Stefan Pöhlmann, Wolfgang Baumgärtner, Albert Osterhaus, Thomas F Schulz, Thomas Krey
{"title":"A human monoclonal antibody neutralizing SARS-CoV-2 Omicron variants containing the L452R mutation.","authors":"Saskia C Stein, Guido Hansen, George Ssebyatika, Luisa J Ströh, Okechukwu Ochulor, Elisabeth Herold, Britta Schwarzloh, Doris Mutschall, Jasmin Zischke, Anne K Cordes, Talia Schneider, Imke Hinrichs, Rainer Blasczyk, Hannah Kleine-Weber, Markus Hoffmann, Florian Klein, Franziska K Kaiser, Mariana Gonzalez-Hernandez, Federico Armando, Malgorzata Ciurkiewicz, Georg Beythien, Stefan Pöhlmann, Wolfgang Baumgärtner, Albert Osterhaus, Thomas F Schulz, Thomas Krey","doi":"10.1128/jvi.01223-24","DOIUrl":"10.1128/jvi.01223-24","url":null,"abstract":"<p><p>The effectiveness of SARS-CoV-2 therapeutic antibodies targeting the spike (S) receptor-binding domain (RBD) has been hampered by the emergence of variants of concern (VOCs), which have acquired mutations to escape neutralizing antibodies (nAbs). These mutations are not evenly distributed on the RBD surface but cluster on several distinct surfaces, suggesting an influence of the targeted epitope on the capacity to neutralize a broad range of VOCs. Here, we identified a potent nAb from convalescent patients targeting the receptor-binding domain of a broad range of SARS-CoV-2 VOCs. Except for the Lambda and BA.2.86 variants, this nAb efficiently inhibited the entry of most tested VOCs, including Omicron subvariants BA.1, BA.2, XBB.1.5, and EG.5.1 and to a limited extent also BA.4/5, BA.4.6, and BQ.1.1. It bound recombinant S protein with picomolar affinity, reduced the viral load in the lung of infected hamsters, and prevented the severe lung pathology typical for SARS-CoV-2 infections. An X-ray structure of the nAb-RBD complex revealed an epitope that does not fall into any of the conventional classes and provided insights into its broad neutralization properties. Our findings highlight a conserved epitope within the SARS-CoV-2 RBD that should be preferably targeted by therapeutic antibodies and inform rational vaccine development.IMPORTANCETherapeutic antibodies are effective in preventing severe disease from SARS-CoV-2 infection and constitute an important option in pandemic preparedness, but mutations within the S protein of virus variants (e.g., a mutation of L452) confer resistance to many of such antibodies. Here, we identify a human antibody targeting the S protein receptor-binding domain (RBD) with an elevated escape barrier and characterize its interaction with the RBD functionally and structurally at the atomic level. A direct comparison with reported antibodies targeting the same epitope illustrates important differences in the interface, providing insights into the breadth of antibody binding. These findings highlight the relevance of an extended neutralization profiling in combination with biochemical and structural characterization of the antibody-RBD interaction for the selection of future therapeutic antibodies, which may accelerate the control of potential future pandemics.</p>","PeriodicalId":17583,"journal":{"name":"Journal of Virology","volume":" ","pages":"e0122324"},"PeriodicalIF":4.0,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11650997/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142569048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Alpha-synuclein expression in neurons modulates Japanese encephalitis virus infection.","authors":"Anjali Gupta, Vijay Singh Bohara, Aditya Singh Chauhan, Anshuman Mohapatra, Harpreet Kaur, Ajanta Sharma, Nitin Chaudhary, Sachin Kumar","doi":"10.1128/jvi.00418-24","DOIUrl":"10.1128/jvi.00418-24","url":null,"abstract":"<p><p>Japanese encephalitis virus (JEV) stands as a prominent vector-borne zoonotic pathogen, displaying neurotropism and eliciting Parkinson's disease (PD)-like symptoms among most symptomatic survivors. A characteristic feature of PD is the aggregation of mutated α-synuclein (α-syn) that damages the dopaminergic neurons. Considering this link between JEV-induced PD-like symptoms and α-syn pathogenesis, we explored the role of α-syn in JEV infectivity in neuronal cells. Our investigation revealed a significant increase in endogenous α-syn expression in JEV-infected cells. In addition, exogenous α-syn (Exoα-syn) treatment substantially reduced JEV replication, suggesting its anti-JEV effect. Furthermore, Exoα-syn treatment led to the upregulation of superoxide dismutase 1 (SOD1) and reduction in reactive oxygen species (ROS). The results were validated by endogenous α-syn-silencing, which decreased SOD1 and raised ROS levels in neuronal cells. Similarly, the SOD1 inhibition <i>via</i> LCS-1 also intensified ROS and JEV infection. Silencing of SOD1 in α-syn overexpressing neuro2a cells exhibited increased JEV replication. Overall, our results suggest that α-syn exerts an anti-JEV effect by regulating protein involved in oxidative stress inside neuronal cells. This study contributes valuable insights into the interplay between α-syn expression and JEV infectivity, shedding light on avenues further to investigate the potential role of α-syn in JEV pathogenesis.</p><p><strong>Importance: </strong>Japanese encephalitis virus (JEV) poses a significant threat, particularly to children. Despite extensive research efforts, the development of effective treatments against JEV has been impeded. One of the major setbacks is a lack of comprehensive understanding of neurotropism. The study focuses on alpha-synuclein (α-syn), a neuronal protein, and aims to determine its role in JEV pathogenesis. The present study reveals that the host cell upregulates α-syn in response to JEV infection. α-syn restrains JEV propagation by modulating superoxide dismutase 1 (SOD1) expression which further blocks JEV-induced ROS generation. Endogenous α-syn silencing led to a decrease in SOD1 expression and increased viral titer. α-syn plays a crucial role in counteracting oxidative stress through SOD1, which is essential for limiting JEV replication. This study provides broader implications for antiviral strategies and their possible role in neurodegenerative diseases; however, there is still much to explore, particularly regarding α-syn aggregation kinetics in JEV infection.</p>","PeriodicalId":17583,"journal":{"name":"Journal of Virology","volume":" ","pages":"e0041824"},"PeriodicalIF":4.0,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11651009/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142605691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}