Journal of VirologyPub Date : 2024-10-22Epub Date: 2024-09-09DOI: 10.1128/jvi.00631-24
Shijian Zhang, Saumya Anang, Zhiqing Zhang, Hanh T Nguyen, Haitao Ding, John C Kappes, Joseph Sodroski
{"title":"Conformations of membrane human immunodeficiency virus (HIV-1) envelope glycoproteins solubilized in Amphipol A18 lipid-nanodiscs.","authors":"Shijian Zhang, Saumya Anang, Zhiqing Zhang, Hanh T Nguyen, Haitao Ding, John C Kappes, Joseph Sodroski","doi":"10.1128/jvi.00631-24","DOIUrl":"10.1128/jvi.00631-24","url":null,"abstract":"<p><p>Upon binding to the host cell receptor, CD4, the pretriggered (State-1) conformation of the human immunodeficiency virus (HIV-1) envelope glycoprotein (Env) trimer undergoes transitions to downstream conformations important for virus entry. State 1 is targeted by most broadly neutralizing antibodies (bNAbs), whereas downstream conformations elicit immunodominant, poorly neutralizing antibody (pNAb) responses. Extraction of Env from the membranes of viruses or Env-expressing cells disrupts the metastable State-1 Env conformation, even when detergent-free approaches like styrene-maleic acid lipid nanoparticles (SMALPs) are used. Here, we combine three strategies to solubilize and purify mature membrane Envs that are antigenically native (i.e., recognized by bNAbs and not pNAbs): (1) solubilization of Env with a novel amphipathic copolymer, Amphipol A18; (2) use of stabilized pretriggered Env mutants; and (3) addition of the State-1-stabilizing entry inhibitor, BMS-806. Amphipol A18 was superior to the other amphipathic copolymers tested (SMA and AASTY 11-50) for preserving a native Env conformation. A native antigenic profile of A18 Env-lipid-nanodiscs was maintained for at least 7 days at 4°C and 2 days at 37°C in the presence of BMS-806 and was also maintained for at least 1 h at 37°C in a variety of adjuvants. The damaging effects of a single cycle of freeze-thawing on the antigenic profile of the A18 Env-lipid-nanodiscs could be prevented by the addition of 10% sucrose or 10% glycerol. These results underscore the importance of the membrane environment to the maintenance of a pretriggered (State-1) Env conformation and provide strategies for the preparation of lipid-nanodiscs containing native membrane Envs.IMPORTANCEThe human immunodeficiency virus (HIV-1) envelope glycoproteins (Envs) mediate virus entry into the host cell and are targeted by neutralizing antibodies elicited by natural infection or vaccines. Detailed studies of membrane proteins like Env rely on purification procedures that maintain their natural conformation. In this study, we show that an amphipathic copolymer A18 can directly extract HIV-1 Env from a membrane without the use of detergents. A18 promotes the formation of nanodiscs that contain Env and membrane lipids. Env in A18-lipid nanodiscs largely preserves features recognized by broadly neutralizing antibodies (bNAbs) and conceals features potentially recognized by poorly neutralizing antibodies (pNAbs). Our results underscore the importance of the membrane environment to the native conformation of HIV-1 Env. Purification methods that bypass the need for detergents could be useful for future studies of HIV-1 Env structure, interaction with receptors and antibodies, and immunogenicity.</p>","PeriodicalId":17583,"journal":{"name":"Journal of Virology","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11495050/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142154463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Journal of VirologyPub Date : 2024-10-22Epub Date: 2024-09-26DOI: 10.1128/jvi.01041-24
Emily N Gallichotte, Emily A Fitzmeyer, Landon Williams, Mark Cole Spangler, Angela M Bosco-Lauth, Gregory D Ebel
{"title":"WNV and SLEV coinfection in avian and mosquito hosts: impact on viremia, antibody responses, and vector competence.","authors":"Emily N Gallichotte, Emily A Fitzmeyer, Landon Williams, Mark Cole Spangler, Angela M Bosco-Lauth, Gregory D Ebel","doi":"10.1128/jvi.01041-24","DOIUrl":"10.1128/jvi.01041-24","url":null,"abstract":"<p><p>West Nile virus (WNV) and St. Louis encephalitis virus (SLEV) are closely related flaviviruses that can cause encephalitis in humans and related diseases in animals. In nature, both are transmitted by <i>Culex</i>, with wild birds, including jays, sparrows, and robins, serving as vertebrate hosts. WNV and SLEV circulate in the same environments and have recently caused concurrent disease outbreaks in humans. The extent that coinfection of mosquitoes or birds may alter transmission dynamics, however, is not well characterized. We therefore sought to determine if coinfection alters infection kinetics and virus levels in birds and infection rates in mosquitoes. Accordingly, American robins (<i>Turdus migratorius</i>), two species of mosquitoes, and vertebrate and invertebrate cells were infected with WNV and/or SLEV to assess how simultaneous exposure may alter infection outcomes. There was variable impact of coinfection in vertebrate cells, with some evidence that SLEV can suppress WNV replication. However, robins had comparable viremia and antibody responses regardless of coinfection. Conversely, in <i>Culex</i> cells and mosquitoes, we saw a minimal impact of simultaneous exposure to both viruses on replication, with comparable infection, dissemination, and transmission rates in singly infected and coinfected mosquitoes. Importantly, while WNV and SLEV levels in coinfected mosquito midguts were positively correlated, we saw no correlation between them in salivary glands and saliva. These results reveal that while coinfection can occur in both avian and mosquito hosts, the viruses minimally impact one another. The potential for coinfection to alter virus population structure or the likelihood of rare genotypes emerging remains unknown.IMPORTANCEWest Nile virus (WNV) and St. Louis encephalitis virus (SLEV) are closely related viruses that are transmitted by the same mosquitoes and infect the same birds in nature. Both viruses circulate in the same regions and have caused concurrent outbreaks in humans. It is possible that mosquitoes, birds, and/or humans could be infected with both WNV and SLEV simultaneously, as has been observed with Zika, chikungunya, and dengue viruses. To study the impact of coinfection, we experimentally infected vertebrate and invertebrate cells, American robins, and two <i>Culex</i> species with WNV and/or SLEV. Robins were efficiently coinfected, with no impact of coinfection on virus levels or immune response. Similarly, in mosquitoes, coinfection did not impact infection rates, and mosquitoes could transmit both WNV and SLEV together. These results reveal that WNV and SLEV coinfection in birds and mosquitoes can occur in nature, which may impact public health and human disease risk.</p>","PeriodicalId":17583,"journal":{"name":"Journal of Virology","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11495067/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142349175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Journal of VirologyPub Date : 2024-10-22Epub Date: 2024-09-27DOI: 10.1128/jvi.00640-24
Joon S Kang, Kang Zhou, Hui Wang, Sijia Tang, Kristin Van Mouwerik Lyles, Ming Luo, Z Hong Zhou
{"title":"Architectural organization and <i>in situ</i> fusion protein structure of lymphocytic choriomeningitis virus.","authors":"Joon S Kang, Kang Zhou, Hui Wang, Sijia Tang, Kristin Van Mouwerik Lyles, Ming Luo, Z Hong Zhou","doi":"10.1128/jvi.00640-24","DOIUrl":"10.1128/jvi.00640-24","url":null,"abstract":"<p><p>Arenaviruses exist globally and can cause hemorrhagic fever and neurological diseases, exemplified by the zoonotic pathogen lymphocytic choriomeningitis virus (LCMV). The structures of individual LCMV proteins or their fragments have been reported, but the architectural organization and the nucleocapsid assembly mechanism remain elusive. Importantly, the <i>in situ</i> structure of the arenavirus fusion protein complex (glycoprotein complex, GPC) as present on the virion prior to fusion, particularly with its integral stable signal peptide (SSP), has not been shown, hindering efforts such as structure-based vaccine design. Here, we have determined the <i>in situ</i> structure of LCMV proteins and their architectural organization in the virion by cryogenic electron tomography. The tomograms reveal the global distribution of GPC, matrix protein Z, and the contact points between the viral envelope and nucleocapsid. Subtomogram averaging yielded the <i>in situ</i> structure of the mature GPC with its transmembrane domain intact, revealing the GP2-SSP interface and the endodomain of GP2. The number of RNA-dependent RNA polymerase L molecules packaged within each virion varies, adding new perspectives to the infection mechanism. Together, these results delineate the structural organization of LCMV and offer new insights into its mechanism of LCMV maturation, egress, and cell entry.</p><p><strong>Importance: </strong>The impact of COVID-19 on public health has highlighted the importance of understanding zoonotic pathogens. Lymphocytic choriomeningitis virus (LCMV) is a rodent-borne human pathogen that causes hemorrhagic fever. Herein, we describe the <i>in situ</i> structure of LCMV proteins and their architectural organization on the viral envelope and around the nucleocapsid. The virion structure reveals the distribution of the surface glycoprotein complex (GPC) and the contact points between the viral envelope and the underlying matrix protein, as well as the association with the nucleocapsid. The morphology and sizes of virions, as well as the number of RNA polymerase L inside each virion vary greatly, highlighting the fast-changing nature of LCMV. A comparison between the <i>in situ</i> GPC trimeric structure and prior ectodomain structures identifies the transmembrane and endo domains of GPC and key interactions among its subunits. The work provides new insights into LCMV assembly and informs future structure-guided vaccine design.</p>","PeriodicalId":17583,"journal":{"name":"Journal of Virology","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11495036/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142349265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Journal of VirologyPub Date : 2024-10-22Epub Date: 2024-10-03DOI: 10.1128/jvi.01186-24
Thi H T Do, Michelle Wille, Adam K Wheatley, Marios Koutsakos
{"title":"Triton X-100-treated virus-based ELLA demonstrates discordant antigenic evolution of influenza B virus hemagglutinin and neuraminidase.","authors":"Thi H T Do, Michelle Wille, Adam K Wheatley, Marios Koutsakos","doi":"10.1128/jvi.01186-24","DOIUrl":"10.1128/jvi.01186-24","url":null,"abstract":"<p><p>Neuraminidase (NA)-specific antibodies have been associated with protection against influenza and thus NA is considered a promising target for next-generation vaccines against influenza A (IAV) and B viruses (IBV). NA inhibition (NI) by antibodies is typically assessed using an enzyme-linked lectin assay (ELLA). However, ELLA can be confounded by anti-hemagglutinin (anti-HA) antibodies that block NA by steric hindrance (termed HA interference). Although strategies have been employed to overcome HA interference for IAV, similar approaches have not been assessed for IBV. We found that HA interference is common in ELLA using IBV, rendering the technique unreliable. Anti-HA antibodies were not completely depleted from sera by HA-expressing cell lines, and this approach was of limited utility. In contrast, we find that treatment of virions with Triton X-100, but not Tween-20 or ether, efficiently separates the HA and NA components and overcomes interference caused by anti-HA antibodies. We also characterize a panel of recombinant IBV NA proteins that further validated the results from Triton X-100-treated virus-based ELLA. Using these reagents and assays, we demonstrate discordant antigenic evolution between IBV NA and HA over the last 80 years. This optimized ELLA protocol will facilitate further in-depth serological surveys of IBV immunity as well as antigenic characterization of the IBV NA on a larger scale.IMPORTANCEInfluenza B viruses (IBVs) contribute to annual epidemics and may cause severe disease, especially in children. Consequently, several approaches are being explored to improve vaccine efficacy, including the addition of neuraminidase (NA). Antigen selection and assessment of serological responses will require a reliable serological assay to specifically quantify NA inhibition (NI). Although such assays have been assessed for influenza A viruses (IAVs), this has not been done of influenza B viruses. Our study identifies a readily applicable strategy to measure the inhibitory activity of neuraminidase-specific antibodies against influenza B virus without interference from anti-hemagglutinin (anti-HA) antibodies. This will aid broader serological assessment of influenza B virus-specific antibodies and antigenic characterization of the influenza B virus neuraminidase.</p>","PeriodicalId":17583,"journal":{"name":"Journal of Virology","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11494982/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142365659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kay L Fiske, Pamela H Brigleb, Luzmariel Medina Sanchez, Reinhard Hinterleitner, Gwen M Taylor, Terence S Dermody
{"title":"Strain-specific differences in reovirus infection of murine macrophages segregate with polymorphisms in viral outer-capsid protein σ3.","authors":"Kay L Fiske, Pamela H Brigleb, Luzmariel Medina Sanchez, Reinhard Hinterleitner, Gwen M Taylor, Terence S Dermody","doi":"10.1128/jvi.01147-24","DOIUrl":"https://doi.org/10.1128/jvi.01147-24","url":null,"abstract":"<p><p>Mammalian orthoreovirus (reovirus) strains type 1 Lang (T1L) and type 3 Dearing-RV (T3D-RV) infect the intestine in mice but differ in the induction of inflammatory responses. T1L infection is associated with the blockade of oral immunological tolerance to newly introduced dietary antigens, whereas T3D-RV is not. T1L infection leads to an increase in infiltrating phagocytes, including macrophages, in gut-associated lymphoid tissues that are not observed in T3D-RV infection. However, the function of macrophages in reovirus intestinal infection is unknown. Using cells sorted from infected intestinal tissue and primary cultures of bone-marrow-derived macrophages (BMDMs), we discovered that T1L infects macrophages more efficiently than T3D-RV. Analysis of T1L × T3D-RV reassortant viruses revealed that the viral S4 gene segment, which encodes outer-capsid protein σ3, is responsible for strain-specific differences in infection of BMDMs. Differences in the binding of T1L and T3D-RV to BMDMs also segregated with the σ3-encoding S4 gene. Paired immunoglobulin-like receptor B (PirB), which serves as a receptor for reovirus, is expressed on macrophages and engages σ3. We found that PirB-specific antibody blocks T1L binding to BMDMs and that T1L binding to PirB<sup>-/-</sup> BMDMs is significantly diminished. Collectively, our data suggest that reovirus T1L infection of macrophages is dependent on engagement of PirB by viral outer-capsid protein σ3. These findings raise the possibility that macrophages function in the innate immune response to reovirus infection that blocks immunological tolerance to new food antigens.IMPORTANCEMammalian orthoreovirus (reovirus) infects humans throughout their lifespan and has been linked to celiac disease (CeD). CeD is caused by a loss of oral immunological tolerance (LOT) to dietary gluten and leads to intestinal inflammation following gluten ingestion, which worsens with prolonged exposure and can cause malnutrition. There are limited treatment options for CeD. While there are genetic risk factors associated with the illness, triggers for disease onset are not completely understood. Enteric viruses, including reovirus, have been linked to CeD induction. We found that a reovirus strain associated with oral immunological tolerance blockade infects macrophages by virtue of its capacity to bind macrophage receptor PirB. These data contribute to an understanding of the innate immune response elicited by reovirus, which may shed light on how viruses trigger LOT and inform the development of CeD vaccines and therapeutic agents.</p>","PeriodicalId":17583,"journal":{"name":"Journal of Virology","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142468900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jed Valentiner Shrewsbury, Evangelin Shaloom Vitus, Adam Leslie Koziol, Anna Nenarokova, Tine Jess, Rahma Elmahdi
{"title":"Comprehensive phage display viral antibody profiling using VirScan: potential applications in chronic immune-mediated disease.","authors":"Jed Valentiner Shrewsbury, Evangelin Shaloom Vitus, Adam Leslie Koziol, Anna Nenarokova, Tine Jess, Rahma Elmahdi","doi":"10.1128/jvi.01102-24","DOIUrl":"https://doi.org/10.1128/jvi.01102-24","url":null,"abstract":"<p><p>Phage immunoprecipitation sequencing (PhIP-Seq) is a high-throughput platform that uses programmable phage display for serology. VirScan, a specific PhIP-Seq library encoding viral peptides from all known human viruses, enables comprehensive quantification of past viral exposures. We review its use in immune-mediated diseases (IMDs), highlighting its utility in identifying viral exposures in the context of IMD development. Finally, we evaluate its potential for precision medicine by integrating it with other large-scale omics data sets.</p>","PeriodicalId":17583,"journal":{"name":"Journal of Virology","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142468891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Navneet Singh, Sherin Zachariah, Aaron T Phillips, David Tscharke
{"title":"Lytic promoter activity during herpes simplex virus latency is dependent on genome location.","authors":"Navneet Singh, Sherin Zachariah, Aaron T Phillips, David Tscharke","doi":"10.1128/jvi.01258-24","DOIUrl":"https://doi.org/10.1128/jvi.01258-24","url":null,"abstract":"<p><p>Herpes simplex virus 1 (HSV-1) is a significant pathogen that establishes lifelong latent infections with intermittent episodes of resumed disease. In mouse models of HSV infection, sporadic low-level lytic gene expression has been detected during latency in the absence of reactivation events that lead to production of new viruses. This viral activity during latency has been reported using a sensitive Cre-marking model for several lytic gene promoters placed in one location in the HSV-1 genome. Here, we extend these findings in the same model by examining first, the activity of an ectopic lytic gene promoter in several places in the genome and second, whether any promoters might be active in their natural context. We found that <i>Cre</i> expression was detected during latency from ectopic and native promoters, but only in locations near the ends of the unique long genome segment. This location is significant because it is in close proximity to the region from which latency-associated transcripts (LATs) are derived. These results show that native HSV-1 lytic gene promoters can produce protein products during latency, but that this activity is only detectable when they are located close to the LAT locus.IMPORTANCEHSV is a significant human pathogen and the best studied model of mammalian virus latency. Traditionally, the active (lytic) and inactive (latent) phases of infection were considered to be distinct, but the notion of latency being entirely quiescent is evolving due to the detection of some lytic gene expression during latency. Here, we add to this literature by finding that the activity can be found for native lytic gene promoters as well as for constructs placed ectopically in the HSV genome. However, this activity was only detectable when these promoters were located close by a region known to be transcriptionally active during latency. These data have implications for our understanding of HSV gene regulation during latency and the extent to which transcriptionally active regions are insulated from adjacent parts of the viral genome.</p>","PeriodicalId":17583,"journal":{"name":"Journal of Virology","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142468896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Biruhalem Taye, Iris Yousaf, Chanakha K Navaratnarajah, Declan C Schroeder, Christian K Pfaller, Roberto Cattaneo
{"title":"A measles virus collective infectious unit that caused lethal human brain disease includes many locally restricted and few widespread copy-back defective genomes.","authors":"Biruhalem Taye, Iris Yousaf, Chanakha K Navaratnarajah, Declan C Schroeder, Christian K Pfaller, Roberto Cattaneo","doi":"10.1128/jvi.01232-24","DOIUrl":"https://doi.org/10.1128/jvi.01232-24","url":null,"abstract":"<p><p>During virus replication in cultured cells, copy-back defective viral genomes (cbDVGs) can arise. CbDVGs are powerful inducers of innate immune responses <i>in vitro</i>, but their occurrence and impact on natural infections of human hosts remain poorly defined. We asked whether cbDVGs were generated in the brain of a patient who succumbed to subacute sclerosing panencephalitis (SSPE) about 20 years after acute measles virus (MeV) infection. Previous analyses of 13 brain specimens of this patient indicated that a collective infectious unit (CIU) drove lethal MeV spread. In this study, we identified 276 replication-competent cbDVG species, each present in over 100 copies in the brain. Six species were detected in multiple forebrain locations, implying that they travelled long-distance with the CIU. The cbDVG to full-length genomes ratio was often close to 1 (0.6-1.74). Most cbDVGs were 324-2,000 bases in length, corresponding to 2%-12% of the full-length genome; all are predicted to have complementary terminal sequences. If improperly encapsidated, these sequences have the potential to form double-stranded structures that can induce innate immune responses. To assess this, we examined the transcriptome of all brain specimens. Several interferon and inflammatory response genes were upregulated, but upregulation levels did not correlate with cbDVG levels in the specimens. Thus, the CIU that drove MeV pathogenesis in this brain includes, in addition to two complementary full-length genome populations, many locally restricted and few widespread cbDVG species. The widespread cbDVG species may have been positively selected but how they impacted pathogenesis remains to be determined.IMPORTANCECopy-back defective viral genomes (cbDVGs) can drive virus-host interactions. They can suppress virus replication directly, by competing with full-length genomes, or indirectly by stimulating antiviral immunity. <i>In vitro</i>, cbDVG can slow down infections and promote persistence, but there is limited documentation of their presence in human hosts or of their impact on disease. We had the unique opportunity to analyze the brain of a patient who succumbed to subacute sclerosing panencephalitis, a rare but lethal consequence of measles. We detected more than 270 distinct cbDVG species; most were restricted to one specimen, but several reached all lobes of the forebrain, suggesting positive selection. Our analyses provide the missing knowledge of the diversity of cbDVG in a natural infection of a human host. They also reveal that a collective infectious unit that caused lethal human brain disease includes few widespread cbDVG, in addition to two ubiquitous complementary full-length genome populations.</p>","PeriodicalId":17583,"journal":{"name":"Journal of Virology","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142468888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mei Mo, Jiannan Chen, Yushan Yang, Yinyin Yu, Wenbi Wu, Kai Yang, Meijin Yuan
{"title":"Autographa californica multiple nucleopolyhedrovirus <i>ac106</i> is required for the nuclear egress of nucleocapsids and intranuclear microvesicle formation.","authors":"Mei Mo, Jiannan Chen, Yushan Yang, Yinyin Yu, Wenbi Wu, Kai Yang, Meijin Yuan","doi":"10.1128/jvi.01135-24","DOIUrl":"https://doi.org/10.1128/jvi.01135-24","url":null,"abstract":"<p><p>Autographa californica multiple nucleopolyhedrovirus (AcMNPV) <i>orf106</i> (<i>ac106</i>) is highly conserved in baculoviruses. Previous studies have shown that <i>ac106</i> is required for the production of infectious budded virions (BVs). However, the functional role of <i>ac106</i> in virion morphogenesis remains unknown. In this report, an <i>ac106</i> knockout virus and an <i>ac106</i> repair virus were constructed. The effect of <i>ac106</i> deletion on virion morphogenesis was investigated, and the expression and subcellular localization of the Ac106 protein were characterized. Our data indicated that <i>ac106</i> is required for the nuclear egress of nucleocapsids and intranuclear microvesicle formation, as well as subsequent BV and occlusion-derived virion (ODV) production and the embedding of ODVs into polyhedra. Ac106 is a baculovirus late protein that is concentrated in discrete foci of virus-induced membrane structures in the intranuclear ring zone of virus-infected cells. Further studies on the relationship between Ac106 and four other proteins that are also required for intranuclear microvesicle formation, Ac75, Ac76, Ac93, and P48 (Ac103), revealed that Ac106 is associated with Ac75, Ac76, Ac93, P48, and itself. Ac106 is required for Ac75, Ac93, and P48 accumulation in foci of virus-induced intranuclear membrane structures and the intranuclear transport of Ac76. Analysis of the subcellular localization of ODV integral envelope proteins upon deletion of the genes required for intranuclear microvesicle formation indicated that intranuclear microvesicle formation may be essential for ODV integral envelope protein transport into the nucleus, supporting the hypothesis that intranuclear microvesicles originate from the nuclear membrane.IMPORTANCEBaculovirus occlusion-derived virions (ODVs) are known to acquire their envelopes from virus-induced intranuclear microvesicles within the nucleoplasm, and this strategy of intranuclear envelopment of nucleocapsids to form virions is unique among viruses. However, the mechanism of ODV morphogenesis, particularly intranuclear microvesicle formation, remains unclear. In this study, we identified <i>ac106</i> as the fifth gene, in addition to <i>ac75</i>, <i>ac76</i>, <i>ac93</i>, and <i>p48</i> (<i>ac103</i>), which are required for intranuclear microvesicle formation. Further studies on the relationship between <i>ac106</i> and the other four genes, as well as the effect of <i>ac106</i> or <i>ac75</i> deletion on the localization of ODV integral envelope proteins, indicated that intranuclear microvesicle formation may be essential for the transport of ODV integral envelope proteins into the nucleus, which strongly supports the hypothesis that intranuclear microvesicles originate from the nuclear membrane. These findings greatly enhance our understanding of the molecular mechanism of baculovirus ODV morphogenesis.</p>","PeriodicalId":17583,"journal":{"name":"Journal of Virology","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142468890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Human metapneumovirus SH protein promotes JAK1 degradation to impair host IL-6 signaling.","authors":"Adam Brynes, Yu Zhang, John V Williams","doi":"10.1128/jvi.01104-24","DOIUrl":"https://doi.org/10.1128/jvi.01104-24","url":null,"abstract":"<p><p>Human metapneumovirus (HMPV) is a leading cause of respiratory infections in children, older adults, and those with underlying conditions (K. M. Edwards et al., N Engl J Med 368:633-643, 2013, https://doi.org/10.1056/NEJMoa1204630; A. R. Falsey et al., J Infect Dis 187:785-790, 2003, https://doi.org/10.1086/367901; J. S. Kahn, Clin Microbiol Rev 19:546-557, 2006, https://doi.org/10.1128/CMR.00014-06; N. Shafagati and J. Williams, F1000Res 7:135, 2018, https://doi.org/10.12688/f1000research.12625.1). HMPV must evade immune defenses to replicate successfully; however, the viral proteins used to accomplish this are poorly characterized. The HMPV small hydrophobic (SH) protein has been reported to inhibit signaling through type I and type II interferon (IFN) receptors <i>in vitro</i> in part by preventing STAT1 phosphorylation (A. K. Hastings et al., Virology (Auckl) 494:248-256, 2016, https://doi.org/10.1016/j.virol.2016.04.022). HMPV infection also inhibits IL-6 signaling. However, the mechanisms by which SH inhibits signaling and its involvement in IL-6 signaling inhibition are unknown. Here, we used transfection of SH expression plasmids and SH-deleted virus (ΔSH) to show that SH is the viral factor responsible for the inhibition of IL-6 signaling during HMPV infection. Transfection of SH-expression vectors or infection with wild-type, but not ΔSH virus, blocked IL-6-mediated STAT3 activation. Furthermore, JAK1 protein (but not RNA) was significantly reduced in cells infected with wild-type, but not ΔSH virus. The SH-mediated reduction of JAK1 was partially restored by the addition of proteasome inhibitors, suggesting proteasomal degradation of JAK1. Confocal microscopy indicated that infection relocalized JAK1 to viral replication factories. Co-immunoprecipitation showed that SH interacts with JAK1 and ubiquitin, further linking SH to proteasomal degradation machinery. These data indicate that SH inhibits IL-6 and IFN signaling in infected cells in part by promoting proteasomal degradation of JAK1 and that SH is necessary for IL-6 and IFN signaling inhibition in infection. These findings enhance our understanding of the immune evasion mechanisms of an important respiratory pathogen.IMPORTANCEHuman metapneumovirus (HMPV) is a common cause of severe respiratory illness, especially in children and older adults, in whom it is a leading cause of hospitalization. Prior research suggests that severe HMPV infection is driven by a strong immune response to the virus, especially by inflammatory immune signals like interferons (IFN). HMPV produces a small hydrophobic (SH) protein that is known to block IFN signaling, but the mechanism by which it functions and its ability to inhibit other important immune signals remains unexplored. This paper demonstrates that SH can inhibit another related immune signal, IL-6, and that SH depletes JAKs, which are critical proteins involved in both IL-6 and IFN signaling. A robust understanding of how HMPV and relat","PeriodicalId":17583,"journal":{"name":"Journal of Virology","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142468895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}