{"title":"Computational Fluid Dynamics Analysis of Jet-Ullage Interactions During Microgravity Mixing","authors":"Olga Kartuzova, Mohammad Kassemi","doi":"10.2514/1.t6725","DOIUrl":"https://doi.org/10.2514/1.t6725","url":null,"abstract":"Forced jet mixing with and without cooling has long been proposed for active pressure control of cryogenic tanks in microgravity. In this paper, a three-dimensional two-phase computational fluid dynamics (CFD) model is presented that was developed to capture the intricate dynamic interaction between a forced liquid jet and the ullage interface under weightlessness conditions. The CFD model is validated against the microgravity results of the Tank Pressure Control Experiment. The volume-of-fluid method is used to capture the ullage deformation as well as movement in the jet mixing simulations of the microgravity experiment. Two different initial ullage positions are considered, and computational results for the jet–ullage interaction are compared with a still-image sequence captured from real-time video of the experiment. Parametric simulations over a range of jet Weber numbers indicate four distinct jet–ullage interaction modes from nonpenetrating to fully penetrating, which are corroborated experimentally. Qualitative comparisons also provide good agreement between CFD predictions and experimental results with regard to the main features of the ullage dynamics, such as movement, deformation, and jet penetration during microgravity mixing.","PeriodicalId":17482,"journal":{"name":"Journal of Thermophysics and Heat Transfer","volume":"2013 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135320210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correlation of Forced Convection Heat Transfer of Isothermal Plate Under Low Pressure","authors":"Tianjun Luo, Yanjun Chen, Deqiang He, Yongli Chen","doi":"10.2514/1.t6846","DOIUrl":"https://doi.org/10.2514/1.t6846","url":null,"abstract":"With the rapid development of vacuum tube transport technology, there is increased interest in understanding the behavior of the heat transfer of rarefied gas in a vacuum tube. Currently, most empirical correlations of forced convection heat transfer are conducted at the standard atmospheric pressure, so many correlations are not applicable to conditions below the atmospheric pressure. To investigate the heat transfer property under low-pressure conditions, the forced convection between isothermal plate and air in a low-pressure environment is numerically simulated. The results show that the traditional correlation of the forced convection heat transfer between the isothermal plate and gases is different from the actual results at low pressure, and the correlation is completely invalid when the pressure is lower than 0.2 kPa. Based on the data of numerical calculation, a modified correlation of forced convection heat transfer between an isothermal plate and gases under low pressure is proposed. The correlation coefficient [Formula: see text] is greater than 0.99, and the fitting error is less than 10% at the 95% confidence level. The change of heat transfer depends on the Reynolds number in the pressure range of 0.2–100 kPa, but the effect of Reynolds number is weakened and the effect of pressure is strengthened when the pressure is below 0.2 kPa.","PeriodicalId":17482,"journal":{"name":"Journal of Thermophysics and Heat Transfer","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42463865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shrutakeerti Mallikarjun, V. Casseau, W. Habashi, Song Gao, A. Karchani
{"title":"Hybrid Navier–Stokes–Direct Simulation Monte Carlo Automatic Mesh Optimization for Hypersonics","authors":"Shrutakeerti Mallikarjun, V. Casseau, W. Habashi, Song Gao, A. Karchani","doi":"10.2514/1.t6770","DOIUrl":"https://doi.org/10.2514/1.t6770","url":null,"abstract":"This paper describes the development of an unstructured hybrid finite element Navier–Stokes (NS)–direct simulation Monte Carlo (DSMC) framework for hypersonic flows. State-based coupling is employed and simulations of varying thermochemical complexity demonstrate the accuracy, robustness, and computational efficiency of the hybrid all-Mach algorithm. An automatic mesh optimization process using a posteriori error estimates based on the Hessian of the solution goes much further than traditional mesh adaptation processes by equidistributing the error estimator and producing a “single optimal hybrid mesh” with no increase in mesh size and with much higher accuracy. The DSMC region cells of the resulting optimal mesh are smaller than in NS regions and are sized to the local mean free path. Mesh optimization is also shown to greatly improve the quality of the hybrid interfaces from those of the initial mesh. Unstructured meshes are found to represent the hybrid interfaces smoothly, while structured meshes showcase a castellated pattern in the interfaces. The optimal hybrid meshes are found to be statistically similar to optimal full DSMC meshes, thus highlighting the solver independence of the optimizer. Such a coupled hybrid mesh optimization strategy can therefore tackle hypersonic flows with multiscale flow features at any degree of rarefaction.","PeriodicalId":17482,"journal":{"name":"Journal of Thermophysics and Heat Transfer","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44785344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
B. Parent, Prasanna T. Rajendran, S. Macheret, J. Little, R. W. Moses, C. Johnston, F. Cheatwood
{"title":"Effect of Plasma Sheaths on Earth-Entry Magnetohydrodynamics","authors":"B. Parent, Prasanna T. Rajendran, S. Macheret, J. Little, R. W. Moses, C. Johnston, F. Cheatwood","doi":"10.2514/1.t6784","DOIUrl":"https://doi.org/10.2514/1.t6784","url":null,"abstract":"The first study of the full coupling between the aerothermodynamics, the magnetohydrodynamics (MHD), and the plasma sheaths within Earth-entry flows is here performed. The problem addressed herein is representative of a force-generating MHD patch located between the stagnation point and the aft of a capsule entering the Earth’s atmosphere at Mach 34. The reactions are obtained from the Park chemical solver and the transport coefficients from the Gupta–Yos model with modifications. The physical model fully couples the drift–diffusion model for the sheaths to the multispecies Navier–Stokes equations for the plasma flow. The Hall and ion slip effects are taken into consideration within the plasma flow and within the sheaths. The effect of the electrode material on the MHD process is studied. Using thoriated tungsten instead of graphite leads to a thirtyfold increase in the Lorentz forces and also leads to significantly reduced heat fluxes on the cathode. This is attributed to the much higher electrical conductivity of the thoriated tungsten sheath reducing by orders of magnitude the plasma electrical resistance near the surfaces.","PeriodicalId":17482,"journal":{"name":"Journal of Thermophysics and Heat Transfer","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48066009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. McMasters, F. de Monte, Giampaolo D’Alessandro, J. Beck
{"title":"Analytical Solution for One-Dimensional Transient Thermal Conduction in a Hollow Cylinder","authors":"R. McMasters, F. de Monte, Giampaolo D’Alessandro, J. Beck","doi":"10.2514/1.t6844","DOIUrl":"https://doi.org/10.2514/1.t6844","url":null,"abstract":"The primary use of analytical solutions in the area of thermal conduction problems is for verification purposes, comparing the calculated temperatures and heat flux values to the results from numerical codes. The contribution from the analytical solutions can be especially significant where large temperature gradients are found. This is because the temperature and heat flux results can be found very precisely: normally to eight or 10 significant figures using analytical solutions. Normally, numerical solutions require extremely fine grids in high-heat-flux locations, but analytical solutions can provide insight into the adequacy of grid densities in these types of situations. One area of particular interest is in nonrectangular analytical solutions because generalized numerical grids do not naturally lend themselves well to curved surfaces without a large number of nodes. In this current study, four solutions are offered in a geometry involving a hollow cylinder. Two of the solutions examine heating from the inside of the cylinder, and two involve heating from the outside. Development of the solutions is provided along with results that show the temperature responses to the various sets of boundary conditions. A mathematical identity is used as part of the solution, which eliminates the need to evaluate an infinite series, along with need to find roots of transcendental equations and evaluate Bessel functions. Intrinsic verification is also applied in order to provide assurance that the solutions are properly formulated and evaluated.","PeriodicalId":17482,"journal":{"name":"Journal of Thermophysics and Heat Transfer","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45106254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Conjugate Heat Transfer in High-Speed External Flows: A Review","authors":"Mikaela T. Lewis, Jean-Pierre Hickey","doi":"10.2514/1.t6763","DOIUrl":"https://doi.org/10.2514/1.t6763","url":null,"abstract":"","PeriodicalId":17482,"journal":{"name":"Journal of Thermophysics and Heat Transfer","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42483434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andrew G. Fordon, Fernando Soria, Yun-Hong Xu, S. Putnam
{"title":"Recurrent Neural Network Flow Rate Modeling of Piezoelectric Injectors in Cooling Testbeds","authors":"Andrew G. Fordon, Fernando Soria, Yun-Hong Xu, S. Putnam","doi":"10.2514/1.t6833","DOIUrl":"https://doi.org/10.2514/1.t6833","url":null,"abstract":"","PeriodicalId":17482,"journal":{"name":"Journal of Thermophysics and Heat Transfer","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43817473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nicholas Pellizzari, Ryan Touzjian, Andrea Scouras, William P. Flaherty
{"title":"System-Level Impingement Cooling with Cryogens","authors":"Nicholas Pellizzari, Ryan Touzjian, Andrea Scouras, William P. Flaherty","doi":"10.2514/1.t6574","DOIUrl":"https://doi.org/10.2514/1.t6574","url":null,"abstract":"System-level impingement cooling with cryogens has potential thermal applications in size-constrained, weight-constrained, and power-constrained or low-atmosphere environments by utilizing a phase change for enhanced heat transfer at cryogenic temperatures. In this work, an experiment capable of measuring the heat and mass flow of liquid nitrogen jets for variable impingement surface temperatures, mass flow rates, and jet geometries is developed. A boiling curve and other performance metrics are produced. A critical heat flux of approximately [Formula: see text] is observed.","PeriodicalId":17482,"journal":{"name":"Journal of Thermophysics and Heat Transfer","volume":"52 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136011725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Robust Statistical Approach for Determination of Graphite Nitridation Using Bayesian Model Comparison","authors":"K. Miki, R. Upadhyay","doi":"10.2514/1.t6802","DOIUrl":"https://doi.org/10.2514/1.t6802","url":null,"abstract":"A better estimation of surface reaction efficiency of semiconductor-grade graphite with atomic nitrogen, as well as the calibration error are calculated using Bayesian updating based on experimental data. Compared with a conventional deterministic model, the stochastic model approach is a powerful tool in the sense that the model is capable of taking into account underlying error correlations among the data quantities. In this paper, we investigate four different stochastic models (called “stochastic system model classes” herein) corresponding to different descriptions of modeling and measurement error structures, given one deterministic physical model. These stochastic system model classes differ in the covariance matrix structure that is used in the uncertainty model to represent uncertainties associated with the physical model and experimental measurements. For each model class, Bayesian inference is used to estimate the posterior probabilities of the physical model parameters as well as of the stochastic model parameters. Model comparison and selection are then applied based on two measures including Bayesian evidence and Bayesian information criterion, as well as the deviance information criterion. Both measures suggest the stochastic model class, which considers that a correlation between errors in two data quantities among different data points is the most plausible. With the stochastic model class, the range of uncertainty in surface reaction efficiency is estimated to be about two orders of magnitude at [Formula: see text].","PeriodicalId":17482,"journal":{"name":"Journal of Thermophysics and Heat Transfer","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43979571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohammed Lamine Moussaoui, B. Mahfoud, Hibet Errahmane Mahfoud
{"title":"Using a Magnetic Field to Reduce Thermocapillary Convection in Thin Annular Pools","authors":"Mohammed Lamine Moussaoui, B. Mahfoud, Hibet Errahmane Mahfoud","doi":"10.2514/1.t6832","DOIUrl":"https://doi.org/10.2514/1.t6832","url":null,"abstract":"This paper presents the investigation of thermocapillary convection in three-dimensional (3-D) thin pools with three cases of annular gaps containing silicon melt under a vertical magnetic field. The model was composed of two vertical walls: the inner is cold, and the outside is hot. Radiation is emitted upward from the free top surface, and the bottom is heated vertically. Both cases are considered in this study, electrically insulating all walls; and only the bottom wall is electrically conducting for three annular gaps. The governing equations were solved numerically through the finite volume method. The effects of different parameters such as the Hartmann number, annular gaps on the temperature distribution, the hydrothermal wave number, and azimuthal patterns, as well as the transition from 3-D steady to axisymmetric flows, were investigated. The results showed three hydrothermal waves are observed in a 3-D steady flow. It was also found that with the increasing Hartmann number, the azimuthal velocity, the temperature fluctuation, and the electric potential decreased. The results also revealed that a stronger magnetic field was needed for the transition from unsteady flow to a nonaxisymmetric steady flow and at the end to steady axisymmetric flow. The findings revealed that electromagnetic damping is more prominent when the bottom wall is electrically conducting than when all walls are insulating.","PeriodicalId":17482,"journal":{"name":"Journal of Thermophysics and Heat Transfer","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46368477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}