{"title":"微重力混合过程中射流-气液相互作用的计算流体动力学分析","authors":"Olga Kartuzova, Mohammad Kassemi","doi":"10.2514/1.t6725","DOIUrl":null,"url":null,"abstract":"Forced jet mixing with and without cooling has long been proposed for active pressure control of cryogenic tanks in microgravity. In this paper, a three-dimensional two-phase computational fluid dynamics (CFD) model is presented that was developed to capture the intricate dynamic interaction between a forced liquid jet and the ullage interface under weightlessness conditions. The CFD model is validated against the microgravity results of the Tank Pressure Control Experiment. The volume-of-fluid method is used to capture the ullage deformation as well as movement in the jet mixing simulations of the microgravity experiment. Two different initial ullage positions are considered, and computational results for the jet–ullage interaction are compared with a still-image sequence captured from real-time video of the experiment. Parametric simulations over a range of jet Weber numbers indicate four distinct jet–ullage interaction modes from nonpenetrating to fully penetrating, which are corroborated experimentally. Qualitative comparisons also provide good agreement between CFD predictions and experimental results with regard to the main features of the ullage dynamics, such as movement, deformation, and jet penetration during microgravity mixing.","PeriodicalId":17482,"journal":{"name":"Journal of Thermophysics and Heat Transfer","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational Fluid Dynamics Analysis of Jet-Ullage Interactions During Microgravity Mixing\",\"authors\":\"Olga Kartuzova, Mohammad Kassemi\",\"doi\":\"10.2514/1.t6725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Forced jet mixing with and without cooling has long been proposed for active pressure control of cryogenic tanks in microgravity. In this paper, a three-dimensional two-phase computational fluid dynamics (CFD) model is presented that was developed to capture the intricate dynamic interaction between a forced liquid jet and the ullage interface under weightlessness conditions. The CFD model is validated against the microgravity results of the Tank Pressure Control Experiment. The volume-of-fluid method is used to capture the ullage deformation as well as movement in the jet mixing simulations of the microgravity experiment. Two different initial ullage positions are considered, and computational results for the jet–ullage interaction are compared with a still-image sequence captured from real-time video of the experiment. Parametric simulations over a range of jet Weber numbers indicate four distinct jet–ullage interaction modes from nonpenetrating to fully penetrating, which are corroborated experimentally. Qualitative comparisons also provide good agreement between CFD predictions and experimental results with regard to the main features of the ullage dynamics, such as movement, deformation, and jet penetration during microgravity mixing.\",\"PeriodicalId\":17482,\"journal\":{\"name\":\"Journal of Thermophysics and Heat Transfer\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermophysics and Heat Transfer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2514/1.t6725\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermophysics and Heat Transfer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/1.t6725","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Computational Fluid Dynamics Analysis of Jet-Ullage Interactions During Microgravity Mixing
Forced jet mixing with and without cooling has long been proposed for active pressure control of cryogenic tanks in microgravity. In this paper, a three-dimensional two-phase computational fluid dynamics (CFD) model is presented that was developed to capture the intricate dynamic interaction between a forced liquid jet and the ullage interface under weightlessness conditions. The CFD model is validated against the microgravity results of the Tank Pressure Control Experiment. The volume-of-fluid method is used to capture the ullage deformation as well as movement in the jet mixing simulations of the microgravity experiment. Two different initial ullage positions are considered, and computational results for the jet–ullage interaction are compared with a still-image sequence captured from real-time video of the experiment. Parametric simulations over a range of jet Weber numbers indicate four distinct jet–ullage interaction modes from nonpenetrating to fully penetrating, which are corroborated experimentally. Qualitative comparisons also provide good agreement between CFD predictions and experimental results with regard to the main features of the ullage dynamics, such as movement, deformation, and jet penetration during microgravity mixing.
期刊介绍:
This Journal is devoted to the advancement of the science and technology of thermophysics and heat transfer through the dissemination of original research papers disclosing new technical knowledge and exploratory developments and applications based on new knowledge. The Journal publishes qualified papers that deal with the properties and mechanisms involved in thermal energy transfer and storage in gases, liquids, and solids or combinations thereof. These studies include aerothermodynamics; conductive, convective, radiative, and multiphase modes of heat transfer; micro- and nano-scale heat transfer; nonintrusive diagnostics; numerical and experimental techniques; plasma excitation and flow interactions; thermal systems; and thermophysical properties. Papers that review recent research developments in any of the prior topics are also solicited.