Weisong Liu, Jun Zhang, Abdul Rahim Rasa, Weiguo Song
{"title":"A modified social force model considering collision avoidance based on empirical studies","authors":"Weisong Liu, Jun Zhang, Abdul Rahim Rasa, Weiguo Song","doi":"10.1088/1742-5468/ad65e4","DOIUrl":"https://doi.org/10.1088/1742-5468/ad65e4","url":null,"abstract":"<title>\u0000<bold>Abstract</bold>\u0000</title>Avoiding collisions between pedestrians is not based solely on geometric approaches, but also involves human social conventions. Previous collision avoidance models on pedestrians often overlooked the significance of personal space and intrusion variations of intruders such as intrusion angles, intrusion extents and danger levels. The avoidance behavior of pedestrians is affected by the relative position, movement direction and distance from their initial position to the path intersection point with the intruders. To build and calibrate a pedestrian avoidance model, virtual reality and realistic experiments with dynamic and static intruders were conducted under different conditions. The critical avoidance boundary, avoidance process function and probability of avoidance side are analyzed from the experiments. Through a comparative analysis, the differences between personal and geometric space required for avoidance were identified. Moreover, an avoidance model that calculates the steering angle based on the kinematic constraints and relative position of intruders is incorporated into the social force model in this study. It successfully replicates pedestrian avoidance behavior when faced with both static and dynamic intruders, and offers a valuable tool for addressing complex pedestrian movements in highly competitive spatial environments.","PeriodicalId":17207,"journal":{"name":"Journal of Statistical Mechanics: Theory and Experiment","volume":"13 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wei Liu, Jincheng Wang, Fangfang Wang, Kai Qi, Zengru Di
{"title":"The precursor of the critical transitions in majority vote model with the noise feedback from the vote layer","authors":"Wei Liu, Jincheng Wang, Fangfang Wang, Kai Qi, Zengru Di","doi":"10.1088/1742-5468/ad6426","DOIUrl":"https://doi.org/10.1088/1742-5468/ad6426","url":null,"abstract":"In this paper, we investigate phase transitions in the majority-vote model coupled with noise layers of different structures. We examine the square lattice and random-regular networks, as well as their combinations, for both vote layers and noise layers. Our findings reveal the presence of independent third-order transitions in all cases and dependent third-order transitions when critical transitions occur. This suggests that dependent third-order transitions may serve as precursors to critical transitions in non-equilibrium systems. Furthermore, we observe that when the structure of vote layers is decentralized, the coupling between the vote layer and the noise layer leads to the absence of critical phenomena.","PeriodicalId":17207,"journal":{"name":"Journal of Statistical Mechanics: Theory and Experiment","volume":"18 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Quenches in the Sherrington–Kirkpatrick model","authors":"Vittorio Erba, Freya Behrens, Florent Krzakala, Lenka Zdeborová","doi":"10.1088/1742-5468/ad685a","DOIUrl":"https://doi.org/10.1088/1742-5468/ad685a","url":null,"abstract":"The Sherrington–Kirkpatrick model is a prototype of a complex non-convex energy landscape. Dynamical processes evolving on such landscapes and locally aiming to reach minima are generally poorly understood. Here, we study quenches, i.e. dynamics that locally aim to decrease energy. We analyse the energy at convergence for two distinct algorithmic classes, single-spin flip and synchronous dynamics, focusing on greedy and reluctant strategies. We provide precise numerical analysis of the finite size effects and conclude that, perhaps counter-intuitively, the reluctant algorithm is compatible with converging to the ground state energy density, while the greedy strategy is not. Inspired by the single-spin reluctant and greedy algorithms, we investigate two synchronous time algorithms, the sync-greedy and sync-reluctant algorithms. These synchronous processes can be analysed using dynamical mean field theory (DMFT), and a new backtracking version of DMFT. Notably, this is the first time the backtracking DMFT is applied to study dynamical convergence properties in fully connected disordered models. The analysis suggests that the sync-greedy algorithm can also achieve energies compatible with the ground state, and that it undergoes a dynamical phase transition.","PeriodicalId":17207,"journal":{"name":"Journal of Statistical Mechanics: Theory and Experiment","volume":"23 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Markov generators as non-Hermitian supersymmetric quantum Hamiltonians: spectral properties via bi-orthogonal basis and singular value decompositions","authors":"Cécile Monthus","doi":"10.1088/1742-5468/ad613a","DOIUrl":"https://doi.org/10.1088/1742-5468/ad613a","url":null,"abstract":"Continuity equations associated with continuous-time Markov processes can be considered as Euclidean Schrödinger equations, where the non-Hermitian quantum Hamiltonian <inline-formula>\u0000<tex-math><?CDATA $boldsymbol{H} = {mathbf{div}}{boldsymbol{J}}$?></tex-math>\u0000<mml:math overflow=\"scroll\"><mml:mrow><mml:mi mathvariant=\"bold-italic\">H</mml:mi><mml:mo>=</mml:mo><mml:mrow><mml:mrow><mml:mi mathvariant=\"bold\">div</mml:mi></mml:mrow></mml:mrow><mml:mrow><mml:mi mathvariant=\"bold-italic\">J</mml:mi></mml:mrow></mml:mrow></mml:math>\u0000<inline-graphic xlink:href=\"jstatad613aieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\u0000</inline-formula> is naturally factorized into the product of the divergence operator <inline-formula>\u0000<tex-math><?CDATA ${mathbf{div}}$?></tex-math>\u0000<mml:math overflow=\"scroll\"><mml:mrow><mml:mrow><mml:mrow><mml:mi mathvariant=\"bold\">div</mml:mi></mml:mrow></mml:mrow></mml:mrow></mml:math>\u0000<inline-graphic xlink:href=\"jstatad613aieqn2.gif\" xlink:type=\"simple\"></inline-graphic>\u0000</inline-formula> and the current operator <bold>\u0000<italic toggle=\"yes\">J</italic>\u0000</bold>. For non-equilibrium Markov jump processes in a space of <italic toggle=\"yes\">N</italic> configurations with <italic toggle=\"yes\">M</italic> links and <inline-formula>\u0000<tex-math><?CDATA $C = M-(N-1)unicode{x2A7E} 1$?></tex-math>\u0000<mml:math overflow=\"scroll\"><mml:mrow><mml:mi>C</mml:mi><mml:mo>=</mml:mo><mml:mi>M</mml:mi><mml:mo>−</mml:mo><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>N</mml:mi><mml:mo>−</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy=\"false\">)</mml:mo><mml:mtext>⩾</mml:mtext><mml:mn>1</mml:mn></mml:mrow></mml:math>\u0000<inline-graphic xlink:href=\"jstatad613aieqn3.gif\" xlink:type=\"simple\"></inline-graphic>\u0000</inline-formula> independent cycles, this factorization of the <italic toggle=\"yes\">N</italic> × <italic toggle=\"yes\">N</italic> Hamiltonian <inline-formula>\u0000<tex-math><?CDATA ${boldsymbol{H}} = {boldsymbol{I}}^{dagger}{boldsymbol{J}}$?></tex-math>\u0000<mml:math overflow=\"scroll\"><mml:mrow><mml:mrow><mml:mi mathvariant=\"bold-italic\">H</mml:mi></mml:mrow><mml:mo>=</mml:mo><mml:msup><mml:mrow><mml:mi mathvariant=\"bold-italic\">I</mml:mi></mml:mrow><mml:mrow><mml:mo>†</mml:mo></mml:mrow></mml:msup><mml:mrow><mml:mi mathvariant=\"bold-italic\">J</mml:mi></mml:mrow></mml:mrow></mml:math>\u0000<inline-graphic xlink:href=\"jstatad613aieqn4.gif\" xlink:type=\"simple\"></inline-graphic>\u0000</inline-formula> involves the incidence matrix <bold>\u0000<italic toggle=\"yes\">I</italic>\u0000</bold> and the current matrix <bold>\u0000<italic toggle=\"yes\">J</italic>\u0000</bold> of size <italic toggle=\"yes\">M</italic> × <italic toggle=\"yes\">N</italic>, so that the supersymmetric partner <inline-formula>\u0000<tex-math><?CDATA ${hat{boldsymbol{H}}} = {boldsymbol{J}}{boldsymbol{I}}^{dagger}$?></tex-math>\u0000<mml:math overflow=\"scroll\"><mml:mrow><mml:mrow><mml:mrow><mml:mover><mml:mi mathvariant=\"bold-italic\">H</mml:mi><mml:mo stretchy=\"true\">^</mml:mo></mml:mover></mml:mrow></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mi mathvariant=\"bold","PeriodicalId":17207,"journal":{"name":"Journal of Statistical Mechanics: Theory and Experiment","volume":"7 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jitendra Kethepalli, Manas Kulkarni, Anupam Kundu, Satya N Majumdar, David Mukamel, Grégory Schehr
{"title":"Full counting statistics of 1d short range Riesz gases in confinement","authors":"Jitendra Kethepalli, Manas Kulkarni, Anupam Kundu, Satya N Majumdar, David Mukamel, Grégory Schehr","doi":"10.1088/1742-5468/ad66c5","DOIUrl":"https://doi.org/10.1088/1742-5468/ad66c5","url":null,"abstract":"We investigate the full counting statistics of a harmonically confined 1d short range Riesz gas consisting of <italic toggle=\"yes\">N</italic> particles in equilibrium at finite temperature. The particles interact with each other through a repulsive power-law interaction with an exponent <italic toggle=\"yes\">k</italic> > 1 which includes the Calogero–Moser model for <italic toggle=\"yes\">k</italic> = 2. We examine the probability distribution of the number of particles in a finite domain <inline-formula>\u0000<tex-math><?CDATA $[-W, W]$?></tex-math>\u0000<mml:math overflow=\"scroll\"><mml:mrow><mml:mo stretchy=\"false\">[</mml:mo><mml:mo>−</mml:mo><mml:mi>W</mml:mi><mml:mo>,</mml:mo><mml:mi>W</mml:mi><mml:mo stretchy=\"false\">]</mml:mo></mml:mrow></mml:math>\u0000<inline-graphic xlink:href=\"jstatad66c5ieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\u0000</inline-formula> called number distribution, denoted by <inline-formula>\u0000<tex-math><?CDATA $mathcal{N}(W, N)$?></tex-math>\u0000<mml:math overflow=\"scroll\"><mml:mrow><mml:mrow><mml:mi>N</mml:mi></mml:mrow><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>W</mml:mi><mml:mo>,</mml:mo><mml:mi>N</mml:mi><mml:mo stretchy=\"false\">)</mml:mo></mml:mrow></mml:math>\u0000<inline-graphic xlink:href=\"jstatad66c5ieqn2.gif\" xlink:type=\"simple\"></inline-graphic>\u0000</inline-formula>. We analyze the probability distribution of <inline-formula>\u0000<tex-math><?CDATA $mathcal{N}(W, N)$?></tex-math>\u0000<mml:math overflow=\"scroll\"><mml:mrow><mml:mrow><mml:mi>N</mml:mi></mml:mrow><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>W</mml:mi><mml:mo>,</mml:mo><mml:mi>N</mml:mi><mml:mo stretchy=\"false\">)</mml:mo></mml:mrow></mml:math>\u0000<inline-graphic xlink:href=\"jstatad66c5ieqn3.gif\" xlink:type=\"simple\"></inline-graphic>\u0000</inline-formula> and show that it exhibits a large deviation form for large <italic toggle=\"yes\">N</italic> characterized by a speed <inline-formula>\u0000<tex-math><?CDATA $N^{frac{3k+2}{k+2}}$?></tex-math>\u0000<mml:math overflow=\"scroll\"><mml:mrow><mml:msup><mml:mi>N</mml:mi><mml:mrow><mml:mfrac><mml:mrow><mml:mn>3</mml:mn><mml:mi>k</mml:mi><mml:mo>+</mml:mo><mml:mn>2</mml:mn></mml:mrow><mml:mrow><mml:mi>k</mml:mi><mml:mo>+</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:mfrac></mml:mrow></mml:msup></mml:mrow></mml:math>\u0000<inline-graphic xlink:href=\"jstatad66c5ieqn4.gif\" xlink:type=\"simple\"></inline-graphic>\u0000</inline-formula> and by a large deviation function (LDF) of the fraction <inline-formula>\u0000<tex-math><?CDATA $c = mathcal{N}(W, N)/N$?></tex-math>\u0000<mml:math overflow=\"scroll\"><mml:mrow><mml:mi>c</mml:mi><mml:mo>=</mml:mo><mml:mrow><mml:mi>N</mml:mi></mml:mrow><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>W</mml:mi><mml:mo>,</mml:mo><mml:mi>N</mml:mi><mml:mo stretchy=\"false\">)</mml:mo><mml:mrow><mml:mo>/</mml:mo></mml:mrow><mml:mi>N</mml:mi></mml:mrow></mml:math>\u0000<inline-graphic xlink:href=\"jstatad66c5ieqn5.gif\" xlink:type=\"simple\"></inline-graphic>\u0000</inline-formula> of the particles inside the domain and <italic toggle=\"yes\">W</italic>. We show that the density profiles ","PeriodicalId":17207,"journal":{"name":"Journal of Statistical Mechanics: Theory and Experiment","volume":"45 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dynamic fluctuations of current and mass in nonequilibrium mass transport processes","authors":"Animesh Hazra, Anirban Mukherjee, Punyabrata Pradhan","doi":"10.1088/1742-5468/ad5c56","DOIUrl":"https://doi.org/10.1088/1742-5468/ad5c56","url":null,"abstract":"We study steady-state dynamic fluctuations of current and mass in several variants of random average processes on a ring of <italic toggle=\"yes\">L</italic> sites. These processes violate detailed balance in the bulk and have nontrivial spatial structures: their steady states are not described by the Boltzmann–Gibbs distribution and can have nonzero spatial correlations. Using a microscopic approach, we exactly calculate the second cumulants, or the variance, <inline-formula>\u0000<tex-math><?CDATA $langle mathcal{Q}_i^2(T) rangle_c$?></tex-math>\u0000<mml:math overflow=\"scroll\"><mml:mrow><mml:mo fence=\"false\" stretchy=\"false\">⟨</mml:mo><mml:msubsup><mml:mrow><mml:mi>Q</mml:mi></mml:mrow><mml:mi>i</mml:mi><mml:mn>2</mml:mn></mml:msubsup><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>T</mml:mi><mml:mo stretchy=\"false\">)</mml:mo><mml:msub><mml:mo fence=\"false\" stretchy=\"false\">⟩</mml:mo><mml:mi>c</mml:mi></mml:msub></mml:mrow></mml:math>\u0000<inline-graphic xlink:href=\"jstatad5c56ieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\u0000</inline-formula> and <inline-formula>\u0000<tex-math><?CDATA $langle mathcal{Q}_{textrm{sub}}^2(l, T) rangle_c$?></tex-math>\u0000<mml:math overflow=\"scroll\"><mml:mrow><mml:mo fence=\"false\" stretchy=\"false\">⟨</mml:mo><mml:msubsup><mml:mrow><mml:mi>Q</mml:mi></mml:mrow><mml:mrow><mml:mtext>sub</mml:mtext></mml:mrow><mml:mn>2</mml:mn></mml:msubsup><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>l</mml:mi><mml:mo>,</mml:mo><mml:mi>T</mml:mi><mml:mo stretchy=\"false\">)</mml:mo><mml:msub><mml:mo fence=\"false\" stretchy=\"false\">⟩</mml:mo><mml:mi>c</mml:mi></mml:msub></mml:mrow></mml:math>\u0000<inline-graphic xlink:href=\"jstatad5c56ieqn2.gif\" xlink:type=\"simple\"></inline-graphic>\u0000</inline-formula>, of cumulative (time-integrated) currents up to time <italic toggle=\"yes\">T</italic> across the <italic toggle=\"yes\">i</italic>th bond and across a subsystem of size <italic toggle=\"yes\">l</italic> (summed over bonds in the subsystem), respectively. We also calculate the (two-point) dynamic correlation function of the subsystem mass. In particular, we show that, for large <inline-formula>\u0000<tex-math><?CDATA $L gg 1$?></tex-math>\u0000<mml:math overflow=\"scroll\"><mml:mrow><mml:mi>L</mml:mi><mml:mo>≫</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:math>\u0000<inline-graphic xlink:href=\"jstatad5c56ieqn3.gif\" xlink:type=\"simple\"></inline-graphic>\u0000</inline-formula>, the second cumulant <inline-formula>\u0000<tex-math><?CDATA $langle mathcal{Q}_i^2(T) rangle_c$?></tex-math>\u0000<mml:math overflow=\"scroll\"><mml:mrow><mml:mo fence=\"false\" stretchy=\"false\">⟨</mml:mo><mml:msubsup><mml:mrow><mml:mi>Q</mml:mi></mml:mrow><mml:mi>i</mml:mi><mml:mn>2</mml:mn></mml:msubsup><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>T</mml:mi><mml:mo stretchy=\"false\">)</mml:mo><mml:msub><mml:mo fence=\"false\" stretchy=\"false\">⟩</mml:mo><mml:mi>c</mml:mi></mml:msub></mml:mrow></mml:math>\u0000<inline-graphic xlink:href=\"jstatad5c56ieqn4.gif\" xlink:type=\"simple\"></inline-graphic>\u0000</inline-formula> of the cumulative current up to time <italic ","PeriodicalId":17207,"journal":{"name":"Journal of Statistical Mechanics: Theory and Experiment","volume":"70 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Markovian description of a wide class of feedback-controlled systems: application to the feedback flashing ratchet","authors":"Natalia Ruiz-Pino, Antonio Prados","doi":"10.1088/1742-5468/ad64bb","DOIUrl":"https://doi.org/10.1088/1742-5468/ad64bb","url":null,"abstract":"In feedback-controlled systems, an external agent—the feedback controller—measures the state of the system and modifies its subsequent dynamics depending on the outcome of the measurement. In this paper, we build a Markovian description for the joint stochastic process that comprises both the system and the controller variables. This Markovian description is valid for a wide class of feedback-controlled systems, allowing for the inclusion of errors in the measurement. The general framework is motivated and illustrated with the paradigmatic example of the feedback flashing ratchet.","PeriodicalId":17207,"journal":{"name":"Journal of Statistical Mechanics: Theory and Experiment","volume":"1 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142188531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Quantum exploration of high-dimensional canyon landscapes","authors":"Pierfrancesco Urbani","doi":"10.1088/1742-5468/ad0635","DOIUrl":"https://doi.org/10.1088/1742-5468/ad0635","url":null,"abstract":"Canyon landscapes in high dimension can be described as manifolds of small, but extensive dimension, immersed in a higher dimensional ambient space and characterized by a zero potential energy on the manifold. Here we consider the problem of a quantum particle exploring a prototype of a high-dimensional random canyon landscape. We characterize the thermal partitionfunction and show that around the point where the classical phase space has a satisfiability transition so that zero potential energy canyons disappear, moderate quantum fluctuations have a deleterious effect: they induce glassy phasesat temperature where classical thermal fluctuations alone would thermalize the system. Surprisingly we show that even when, classically, diffusion is expected to be unbounded in space, the interplay between quantum fluctuations and the randomness of the canyon landscape conspire to have a confining effect.","PeriodicalId":17207,"journal":{"name":"Journal of Statistical Mechanics: Theory and Experiment","volume":"45 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141945003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
David Martin, Gianmarco Spera, Hugues Chaté, Charlie Duclut, Cesare Nardini, Julien Tailleur and Frédéric van Wijland
{"title":"Fluctuation-induced first order transition to collective motion","authors":"David Martin, Gianmarco Spera, Hugues Chaté, Charlie Duclut, Cesare Nardini, Julien Tailleur and Frédéric van Wijland","doi":"10.1088/1742-5468/ad6428","DOIUrl":"https://doi.org/10.1088/1742-5468/ad6428","url":null,"abstract":"The nature of the transition to collective motion in assemblies of aligning self-propelled particles remains a long-standing matter of debate. In this article, we focus on dry active matter and show that weak fluctuations suffice to generically turn second-order mean-field transitions into a ‘discontinuous’ coexistence scenario. Our theory shows how fluctuations induce a density-dependence of the polar-field mass, even when this effect is absent at mean-field level. In turn, this dependency on density triggers a feedback loop between ordering and advection that ultimately leads to an inhomogeneous transition to collective motion and the emergence of inhomogeneous travelling bands. Importantly, we show that such a fluctuation-induced first order transition is present in both metric models, in which particles align with neighbors within a finite distance, and in ‘topological’ ones, in which alignment is based on more complex constructions of neighbor sets. We compute analytically the noise-induced renormalization of the polar-field mass using stochastic calculus, which we further back up by a one-loop field-theoretical analysis. Finally, we confirm our analytical predictions by numerical simulations of fluctuating hydrodynamics as well as of topological particle models with either k-nearest neighbors or Voronoi alignment.","PeriodicalId":17207,"journal":{"name":"Journal of Statistical Mechanics: Theory and Experiment","volume":"41 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141945004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Growth, poverty trap and escape","authors":"Indrani Bose","doi":"10.1088/1742-5468/ad6138","DOIUrl":"https://doi.org/10.1088/1742-5468/ad6138","url":null,"abstract":"The well-known Solow growth model is the workhorse model of the theory of economic growth, which studies capital accumulation in a model economy as a function of time with capital stock, labour and technology-based production as the basic ingredients. The capital is assumed to be in the form of manufacturing equipment and materials. Two important parameters of the model are: the saving fraction of the output of a production function and the technology efficiency parameter , appearing in the production function. The saved fraction of the output is fully invested in the generation of new capital and the rest is consumed. The capital stock also depreciates as a function of time due to the wearing out of old capital and the increase in the size of the labour population. We propose a stochastic Solow growth model assuming the saving fraction to be a sigmoidal function of the per capita capital . We derive analytically the steady state probability distribution and demonstrate the existence of a poverty trap, of central concern in development economics. In a parameter regime, is bimodal with the twin peaks corresponding to states of poverty and well-being, respectively. The associated potential landscape has two valleys with fluctuation-driven transitions between them. The mean exit times from the valleys are computed and one finds that the escape from a poverty trap is more favourable at higher values of We identify a critical value of below (above) which the state of poverty (well-being) dominates and propose two early signatures of the regime shift occurring at . The economic model, with conceptual foundations in nonlinear dynamics and statistical mechanics, shares universal features with dynamical models from diverse disciplines like ecology and cell biology.","PeriodicalId":17207,"journal":{"name":"Journal of Statistical Mechanics: Theory and Experiment","volume":"42 1","pages":""},"PeriodicalIF":2.4,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141881079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}