Thermal rectification in segmented Frenkel–Kontorova lattices with asymmetric next-nearest-neighbor interactions

IF 2.2 3区 物理与天体物理 Q2 MECHANICS
M Romero-Bastida and A Poceros Varela
{"title":"Thermal rectification in segmented Frenkel–Kontorova lattices with asymmetric next-nearest-neighbor interactions","authors":"M Romero-Bastida and A Poceros Varela","doi":"10.1088/1742-5468/ad5c5a","DOIUrl":null,"url":null,"abstract":"In this work, we conduct an extensive study of the asymmetric heat flow, i.e. thermal rectification, present in the two-segment Frenkel Kontorova model with both nearest-neighbor (NN) and next-nearest-neighbor (NNN) interactions. We have considered systems with both high and low asymmetry and determined that, in the weak-coupling limit, thermal rectification is larger when NNN interactions are relevant. The behavior of the heat fluxes as a function of the coupling strength between the two segments is largely consistent with a well-defined rectification for larger system sizes. The local heat fluxes present a very different behavior for systems with high and low asymmetry. The results of this work may help in the design of molecular bridges, which have recently been shown to be able to function as thermal rectification devices.","PeriodicalId":17207,"journal":{"name":"Journal of Statistical Mechanics: Theory and Experiment","volume":"120 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Mechanics: Theory and Experiment","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1742-5468/ad5c5a","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we conduct an extensive study of the asymmetric heat flow, i.e. thermal rectification, present in the two-segment Frenkel Kontorova model with both nearest-neighbor (NN) and next-nearest-neighbor (NNN) interactions. We have considered systems with both high and low asymmetry and determined that, in the weak-coupling limit, thermal rectification is larger when NNN interactions are relevant. The behavior of the heat fluxes as a function of the coupling strength between the two segments is largely consistent with a well-defined rectification for larger system sizes. The local heat fluxes present a very different behavior for systems with high and low asymmetry. The results of this work may help in the design of molecular bridges, which have recently been shown to be able to function as thermal rectification devices.
具有不对称近邻相互作用的分段 Frenkel-Kontorova 晶格中的热整流
在这项工作中,我们对具有最近邻(NNN)和最近邻(NNN)相互作用的两段 Frenkel Kontorova 模型中存在的不对称热流(即热整流)进行了广泛研究。我们考虑了具有高和低不对称性的系统,并确定在弱耦合极限下,当 NNN 相互作用相关时,热整流会更大。热通量与两段耦合强度之间的函数关系与较大系统尺寸的明确整流基本一致。对于不对称程度较高和较低的系统,局部热通量的表现截然不同。这项工作的结果可能有助于分子桥的设计,分子桥最近已被证明能够作为热整流装置发挥作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.50
自引率
12.50%
发文量
210
审稿时长
1.0 months
期刊介绍: JSTAT is targeted to a broad community interested in different aspects of statistical physics, which are roughly defined by the fields represented in the conferences called ''Statistical Physics''. Submissions from experimentalists working on all the topics which have some ''connection to statistical physics are also strongly encouraged. The journal covers different topics which correspond to the following keyword sections. 1. Quantum statistical physics, condensed matter, integrable systems Scientific Directors: Eduardo Fradkin and Giuseppe Mussardo 2. Classical statistical mechanics, equilibrium and non-equilibrium Scientific Directors: David Mukamel, Matteo Marsili and Giuseppe Mussardo 3. Disordered systems, classical and quantum Scientific Directors: Eduardo Fradkin and Riccardo Zecchina 4. Interdisciplinary statistical mechanics Scientific Directors: Matteo Marsili and Riccardo Zecchina 5. Biological modelling and information Scientific Directors: Matteo Marsili, William Bialek and Riccardo Zecchina
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信