Journal of Soils and Sediments最新文献

筛选
英文 中文
Effect of particle size distribution of sediments on development of polder soils in Japan 沉积物的粒径分布对日本围垦土壤发展的影响
IF 3.6 3区 农林科学
Journal of Soils and Sediments Pub Date : 2024-07-02 DOI: 10.1007/s11368-024-03831-9
Seri Nishikura, Masayuki Kawahigashi
{"title":"Effect of particle size distribution of sediments on development of polder soils in Japan","authors":"Seri Nishikura, Masayuki Kawahigashi","doi":"10.1007/s11368-024-03831-9","DOIUrl":"https://doi.org/10.1007/s11368-024-03831-9","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Purpose</h3><p>Polder soils develop from oceanic and lacustrine sediments covered with seawater, brackish water, and freshwater after artificial drainage. Because there are several concerns regarding the agricultural use of polder soils, soil genesis and properties have been considerably surveyed, mainly focusing on problematic soils developed from fine sediments. Although sediments have a wide range of particle size distributions due to different sedimentary conditions, particle size of parent materials have not been well addressed to understand the soil developmental process. In this study, Japanese polders with different reclamation ages and sedimentary conditions were surveyed to clarify the soil formation process and factors affecting pedogenesis.</p><h3 data-test=\"abstract-sub-heading\">Materials and methods</h3><p>Soil samples were collected from 15 soil profiles in six Japanese polders under different land use types. Sedimentary conditions of polders were evaluated from particle size distributions using the hydrodynamic classification proposed by Pejrup (The triangular diagram used for classification of estuarine sediments: a new approach. Tide-influenced Sediment Environ Facies, pp 289–300, 1988). The major soil-forming factors of polders were extracted by principal component analysis (PCA) using general soil properties.</p><h3 data-test=\"abstract-sub-heading\">Results and discussion</h3><p>Brackish lake and inner bay polders were characterized by calm hydrodynamic conditions comprising fine particles. Two polders reclaimed from a shallow inland sea were characterized by violent hydrodynamic conditions. Sandy sediments were also characteristic of immature soils reclaimed from a freshwater lake and an estuarine tidal flat. Soils on polders developed under calm hydrodynamic conditions enabled the accumulation of high total carbon content. The soil-forming process in the brackish bay oxidized pyrite, leading to an acidic soil reaction. Conversely, soils developed from sandy sediments were characterized by low iron content. The PCA extracted two factors explained by particle size and soil reaction relating to acidification and salt leaching.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>Polder soils can be mainly discriminated by their particle size distributions, which are characterized by hydrodynamics under the sedimentary conditions, and the polder soil development is affected by water management in land uses after artificial drainage.</p>","PeriodicalId":17139,"journal":{"name":"Journal of Soils and Sediments","volume":"153 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141505529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Soil C, N, and P contents and organic phosphorus mineralization in constructed wetlands with different litter input in northern China 中国北方不同垃圾投入量的人工湿地中的土壤碳、氮、磷含量和有机磷矿化度
IF 3.6 3区 农林科学
Journal of Soils and Sediments Pub Date : 2024-06-28 DOI: 10.1007/s11368-024-03849-z
Zhiying Tang, Jingxiao Chen, Yinghu Zhang
{"title":"Soil C, N, and P contents and organic phosphorus mineralization in constructed wetlands with different litter input in northern China","authors":"Zhiying Tang, Jingxiao Chen, Yinghu Zhang","doi":"10.1007/s11368-024-03849-z","DOIUrl":"https://doi.org/10.1007/s11368-024-03849-z","url":null,"abstract":"&lt;h3 data-test=\"abstract-sub-heading\"&gt;Purpose&lt;/h3&gt;&lt;p&gt;Constructed wetlands have profound influences on efficient wastewater purification and treatment. However, what extent and how different kinds of constructed wetland can effectively influence the distribution of nutrients content and mineralization? Specially, whether the response of the changes of soil nutrients content and mineralization to different amounts of litter input was consistent? It has not been resolved.&lt;/p&gt;&lt;h3 data-test=\"abstract-sub-heading\"&gt;Methods&lt;/h3&gt;&lt;p&gt;In this study, five constructed wetland systems (i.e., the Circulating Water Treatment Pond 1 (CW), Recirculating Water Treatment Pond 2 (RCW), Reclaimed Water Treatment Pond (RW), Plant Oxidation Pond (POP), and Mixed Oxidation Pond (MOP)) in the Beijing Olympic Forest Park were studied. CW, RCW, and RW belong to the composite vertical-flow systems, while POP and MOP belong to the free surface systems. Field litter input (5 and 20 g, respectively) with five replicates applied to the constructed wetland systems were conducted. The contents of soil total carbon (TC), soil total nitrogen (TN), soil total phosphorus (TP), and phosphorus mineralization rates were quantified. Ordinary kriging interpolation was used to characterize the spatial distribution of soil TC, TN, TP and phosphorus mineralization rates.&lt;/p&gt;&lt;h3 data-test=\"abstract-sub-heading\"&gt;Results&lt;/h3&gt;&lt;p&gt;The results showed that the contents of soil TC and TN in the composite vertical-flow systems (CW, RCW, and RW) were greater than those in the free surface systems (POP and MOP), while it was contrary for the content of soil TP. Soil organic phosphorus (accounting for 45.80 ± 8.12%) and inorganic phosphorus (accounting for 51.81 ± 7.46%) were the main components of soil TP. Phosphorus mineralization rates in the composite vertical-flow systems were greater than the free surface systems. The phosphorus mineralization rates were the smallest in MOP (-2.06 mg·kg&lt;sup&gt;−1&lt;/sup&gt;·d&lt;sup&gt;−1&lt;/sup&gt;) and the highest in RW (0.32 mg·kg&lt;sup&gt;−1&lt;/sup&gt;·d&lt;sup&gt;−1&lt;/sup&gt;). Litter input decreased the contents of soil TC and TN in the composite vertical-flow systems and MOP, while increased in POP. Soil TP content after the litter input increased in CW, RCW, and MOP, while decreased in RW and POP. The litter input was beneficial for improving the phosphorus mineralization rates. The effects of 5 g litter input on the changes of the contents of soil TC, TN, TP and phosphorus mineralization rates were stronger than that of 20 g litter input.&lt;/p&gt;&lt;h3 data-test=\"abstract-sub-heading\"&gt;Conclusion&lt;/h3&gt;&lt;p&gt;Our study has supplemented the inconclusive results of the influences of different constructed wetlands and amounts of litter input on soil nutrient content and mineralization. The findings of this study could provide data support for better constructed wetland management, which could help the managers understand the mechanisms of improving the efficiency of wastewater treatment in constructed wetlands.&lt;/p","PeriodicalId":17139,"journal":{"name":"Journal of Soils and Sediments","volume":"39 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141529337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Real-time detection and measurements of nitrogen, phosphorous & potassium from soil samples: a comprehensive review 土壤样本中氮、磷、钾的实时检测与测量:综述
IF 3.6 3区 农林科学
Journal of Soils and Sediments Pub Date : 2024-06-26 DOI: 10.1007/s11368-024-03827-5
Sikander Ameer, Hussam Ibrahim, F. N. U. Kulsoom, Gulraiz Ameer, Mazhar Sher
{"title":"Real-time detection and measurements of nitrogen, phosphorous & potassium from soil samples: a comprehensive review","authors":"Sikander Ameer, Hussam Ibrahim, F. N. U. Kulsoom, Gulraiz Ameer, Mazhar Sher","doi":"10.1007/s11368-024-03827-5","DOIUrl":"https://doi.org/10.1007/s11368-024-03827-5","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Purpose</h3><p>Soil nutrients such as Nitrogen (N), Phosphorus (P), and Potassium (K) play a vital role in plant growth. It is crucial to apply the right amount of nutrients based on crop needs and soil conditions. Excessive amounts of fertilizer (overfertilization) lead to environmental pollution, nutrients runoff, financial losses, and imbalances that may harm plants. On the other hand, under fertilization causes nutrient deficiencies in soil, limiting plant growth and reducing yields.</p><h3 data-test=\"abstract-sub-heading\">Material and methods</h3><p>To measure NPK, three approaches are used: electrical conductivity testing, optical techniques, and electrochemical methods. These measurements are generally performed in a centralized laboratory. The onsite measurement of NPK levels can help farmers to apply variable-rate fertilizer and manage the resources in the most efficient and effective manner. This article enlists various electrical and optical methods for NPK measurements from soil samples. A comprehensive list of nutrient sensing techniques along with their advantages and limitations are also presented. A thorough literature search is conducted to examine various methods developed for NPK measurements. Each method is presented in detail and discussed the mechanisms for measuring NPK from soil.</p><h3 data-test=\"abstract-sub-heading\">Results and discussion</h3><p>The article discusses syntheses, technical analyses, results, and conclusions of various technologies developed for the NPK measurements. There hasn't been much utilization of optical technology for on-site analyses of soil nutrients. Optical diffuse reflectance in the Ultra-Violet Visible and Near-Infrared wavelength ranges has been used as a non-destructive method for quickly determining soil properties for site-specific management. For real-time analysis, electrochemical sensing with ion-selective electrodes or field effect transistors is a promising technique. It offers direct analyte detection in a simple, rapid, and accurate manner. Laser Induced Graphene (LIG) and Ion Selective Material Electrodes (ISME) are more promising methods.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>A practical and affordable three-in-one biosensor device for on-farm soil testing would be created in the future to help farmers. Farmers can measure real-time status of NPK from soil samples and apply the optimum amount of NPK fertilizer for getting significant financial benefits. The incorporation of real-time, cost-effective, portable, and easy-to-use sensors and devices can significantly help farmers in onsite NPK measurements. Nevertheless, this technique would require numerous field testing using different crops and soil types. To assist farmers in the future, a three-in-one biosensor device that is practical and economical for on-farm soil testing based on ion-selective material principle could be developed. This will allow farmers to have a ha","PeriodicalId":17139,"journal":{"name":"Journal of Soils and Sediments","volume":"61 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141529338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Soil water status dominates growth and nitrogen acquisition strategy of Carex thunbergii in response to nitrogen and water additions 土壤水分状况主导薹草的生长和氮获取策略,以应对氮和水的添加
IF 3.6 3区 农林科学
Journal of Soils and Sediments Pub Date : 2024-06-25 DOI: 10.1007/s11368-024-03848-0
Wuqiong Hu, Dafeng Hui, Chaohe Huangfu
{"title":"Soil water status dominates growth and nitrogen acquisition strategy of Carex thunbergii in response to nitrogen and water additions","authors":"Wuqiong Hu, Dafeng Hui, Chaohe Huangfu","doi":"10.1007/s11368-024-03848-0","DOIUrl":"https://doi.org/10.1007/s11368-024-03848-0","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Purpose</h3><p>Subtropical lake riparian ecosystems experience seasonal water table fluctuations and increased nitrogen (N) deposition with changing N composition. However, the interplay of soil water content (SWC), N deposition chemical composition, and their interaction on plant growth through regulating N acquisition remains poorly understood.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>In this controlled experiment with a sedge species <i>Carex thunbergii</i>, we investigated two treatment factors: (1) SWC at 100%, 60%, and 30% of field capacity, combined with (2) N treatments with NH<sub>4</sub><sup>+</sup>:NO<sub>3</sub><sup>−</sup> ratios of 1:3, 2:2, and 3:1. Treatment verifications were conducted using <sup>15</sup>N isotope tracer (<sup>15</sup>NH<sub>4</sub>NO<sub>3 </sub>and NH<sub>4</sub><sup>15</sup>NO<sub>3</sub>) technology.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>Results showed a notable trend of reduced biomass of <i>C. thunbergii</i> with increasing NH<sub>4</sub><sup>+</sup>: NO<sub>3</sub><sup>−</sup> ratio, especially under high SWC conditions. This negative effect of a high NH<sub>4</sub><sup>+</sup>: NO<sub>3</sub><sup>−</sup> ratio on plant biomass accumulation also aligned with reduced N use efficiency (NUE). Conversely, <i>C. thunbergii</i> exhibited accelerated N uptake with increasing SWC, with the most pronounced response observed in the treatment of NH<sub>4</sub><sup>+</sup>: NO<sub>3</sub><sup>−</sup> ratio of 3:1. Principal component analyses provided evidence for SWC-dominated functional coordination between plant below- and aboveground parts in mediating plant N acquisition, while correlation analyses revealed that NUE mainly contributed to belowground productivity of <i>C. thunbergii</i>.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>Our findings suggest that manipulating water table (as a proxy of SWC) and managing soil NH<sub>4</sub><sup>+</sup>: NO<sub>3</sub><sup>−</sup> ratios could optimize the productivity of this sedge species in riparian ecosystem. The coordination of leaf-root trait highlights the necessity to integrate above- and belowground traits for a comprehensive understanding of plant N acquisition strategies. Understanding plant N acquisition and use efficiency may help us better predict the potential impacts of future climate change components on ecosystem functions.</p>","PeriodicalId":17139,"journal":{"name":"Journal of Soils and Sediments","volume":"46 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141505496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Soil heavy metal pollution and health risk assessment around Wangchun Industrial Park, Ningbo, China 中国宁波望春工业园区周边土壤重金属污染及健康风险评估
IF 3.6 3区 农林科学
Journal of Soils and Sediments Pub Date : 2024-06-24 DOI: 10.1007/s11368-024-03806-w
Jijiao Ding, Jiming Hu
{"title":"Soil heavy metal pollution and health risk assessment around Wangchun Industrial Park, Ningbo, China","authors":"Jijiao Ding, Jiming Hu","doi":"10.1007/s11368-024-03806-w","DOIUrl":"https://doi.org/10.1007/s11368-024-03806-w","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Purpose</h3><p>To explore the soil heavy metal pollution around Wangchun Industrial Park and its health effects on people of different ages.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>In this study, pollution assessment methods such as the <span>({I}_{geo})</span> and the Nemero Comprehensive Pollution Index were used to assess the pollution status of six heavy metals Cd, Ni, Pb, Cu, Hg and As in 32 soil samples collected from Wangchun Industrial Park.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>Observed the average concentrations of the six heavy metals exceeded the background values of Ningshao Plain in four heavy metals, As, Ni, Cu, and Hg, but none of them exceeded the screening values of construction land. According to the analysis of local accumulation index and Nemero index, the order of soil pollution and heavy metal concentration is as follows: As &gt; Ni &gt; Cu &gt; Pb &gt; Cd &gt; Hg. The The results of human health risk assessment, adult men, women, and children are at a higher risk of non-carcingenic from ingestion of HMs that are exposed to the route, children are the group at highest risk of As cancer.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>Contamination of As, Ni and Cu in the soil of the study area has been primarily influenced by the mixing of nearby industrial activities and other human activities. The appropriate concentration ranges of As, Ni and Cu are as follows: As: 5.4–6 mg/kg, Ni: 21.51–32 mg/kg, Cu: 20.98–31.62 mg/kg, which have little impact on human health.</p>","PeriodicalId":17139,"journal":{"name":"Journal of Soils and Sediments","volume":"325 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141512798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aerobic and anaerobic mineralisation of sediment organic matter in the tidal River Elbe 易北河潮汐中沉积有机物的好氧和厌氧矿化作用
IF 3.6 3区 农林科学
Journal of Soils and Sediments Pub Date : 2024-06-24 DOI: 10.1007/s11368-024-03799-6
J. Gebert, F. Zander
{"title":"Aerobic and anaerobic mineralisation of sediment organic matter in the tidal River Elbe","authors":"J. Gebert, F. Zander","doi":"10.1007/s11368-024-03799-6","DOIUrl":"https://doi.org/10.1007/s11368-024-03799-6","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Purpose</h3><p>The share of microbially degradable sediment organic matter (SOM) and the degradation rate depend, among others, on the intrinsic properties of SOM as well as on the type and concentration of terminal electron acceptors (TEA). Next to its role as TEA, molecular oxygen enhances SOM decay by oxygenase-mediated breakdown of complex organic molecules. This research investigated long-term SOM decay (&gt; 250 days) under aerobic and anaerobic conditions to (1) provide a basis for sediment carbon flux estimates from the River Elbe estuary and (2) assess the potential for carbon burial in relation to redox conditions and dredging interventions.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>Long-term aerobic and anaerobic SOM decay in fluid mud, pre-consolidated and consolidated sediment layers was investigated over three years along a transect of ca. 20 km through the Port of Hamburg, starting at the first hydrodynamically determined hotspot of sedimentation after the weir in Geesthacht. Absolute differences between aerobic and anaerobic cumulative carbon mineralization were calculated, as well as their ratio. Findings were correlated to a suite of solids and pore water properties.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>SOM decay followed first order multi-phase exponential decay kinetics. The ratio between C release under aerobic and anaerobic conditions ranged around 4 in the short-term, converging to a value of 2 in the long term. Strong gradients in absolute C release along the upstream–downstream transect did not reflect in a corresponding gradient of the aerobic-anaerobic ratio. C release was most strongly correlated to the water-soluble organic matter, in particular humic acids. Contact of anaerobically stabilized sediment with the oxygenated water phase induced significant release of carbon.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>SOM degradability in the study area exhibited strong spatial gradients in relation to the organic matter source gradient but was mainly limited by the high extent of organic matter stabilization. Under these conditions, molecular oxygen as TEA provides little thermodynamic advantage. Carbon-sensitive sediment management, considering SOM reactivity patterns in stratified depositional areas, is a powerful strategy to reduce environmental impacts of dredging measures.</p>","PeriodicalId":17139,"journal":{"name":"Journal of Soils and Sediments","volume":"19 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141512800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analyzing the interaction between maintenance dredging and seagoing vessels: a case study in the Port of Rotterdam 分析维护性疏浚工程与海船之间的相互作用:鹿特丹港案例研究
IF 3.6 3区 农林科学
Journal of Soils and Sediments Pub Date : 2024-06-21 DOI: 10.1007/s11368-024-03847-1
Arash Sepehri, Alex Kirichek, Solange van der Werff, Fedor Baart, Marcel van den Heuvel, Mark van Koningsveld
{"title":"Analyzing the interaction between maintenance dredging and seagoing vessels: a case study in the Port of Rotterdam","authors":"Arash Sepehri, Alex Kirichek, Solange van der Werff, Fedor Baart, Marcel van den Heuvel, Mark van Koningsveld","doi":"10.1007/s11368-024-03847-1","DOIUrl":"https://doi.org/10.1007/s11368-024-03847-1","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Purpose</h3><p>Maintenance dredging can often hinder port operations resulting in waiting times for seagoing vessels. The purpose of this paper is to investigate the dynamics between maintenance dredging activities and seagoing vessels, specifically focusing on how waiting times can be reduced. Then, the role of selecting different maintenance dredging strategies in reducing these waiting times is outlined.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>The study analyzes historical automatic identification system (AIS) data to identify the interaction between maintenance dredging and seagoing vessels and quantify the hindrance periods for the Mississippihaven case study in the Port of Rotterdam, the Netherlands. The trajectories of the vessels are analyzed in a simple case to show how the vessels interact and how the waiting times are quantified. The interactions are checked with the Port of Rotterdam for different port calls to ensure that maintenance dredging was the reason for these delays.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>By analyzing the AIS data analysis of vessels in a given time window, the dredgers for maintenance work can be identified and their activities within or near the terminal can be determined. In addition, the waiting time of the seagoing vessel caused by the maintenance dredging is quantified at the terminal entrance.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>The study discusses how the maintenance dredging operations could be improved by adjusting the loading and sailing phases of maintenance dredging and provides some theoretical and managerial insights. Alternative port maintenance strategies to minimize the waiting time caused by the hindrance are also discussed.</p>","PeriodicalId":17139,"journal":{"name":"Journal of Soils and Sediments","volume":"24 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141512715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Alterations in soil moisture dynamics due to open-pit coal mining semi-arid regions: Perceptions based on soil water stable isotopes and underground water conductivity analysis 半干旱地区露天开采煤炭造成的土壤水分动态变化:基于土壤水稳定同位素和地下水传导性分析的认识
IF 3.6 3区 农林科学
Journal of Soils and Sediments Pub Date : 2024-06-21 DOI: 10.1007/s11368-024-03840-8
Xikai Wang, Suping Peng, Yunlan He, Zhenzhen Yu
{"title":"Alterations in soil moisture dynamics due to open-pit coal mining semi-arid regions: Perceptions based on soil water stable isotopes and underground water conductivity analysis","authors":"Xikai Wang, Suping Peng, Yunlan He, Zhenzhen Yu","doi":"10.1007/s11368-024-03840-8","DOIUrl":"https://doi.org/10.1007/s11368-024-03840-8","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Purpose</h3><p>Over the past three decades, open-pit mining has been expanding in arid and semi-arid areas of China.Open-pit mining profoundly changes the soil environment and has a profound impact on the circulation of soil water in the aeration zone.Therefore, this research explores the impacts of open-pit coal mining on soil moisture processes in the semi-arid grasslands of Eastern Inner Mongolia Autonomous Region, China.</p><h3 data-test=\"abstract-sub-heading\">Materials and methods</h3><p>Soil samples were collected from depths of 0–500 cm at Shengli No. 1 open-pit mine’s inner dump and a nearby natural grassland. These soil samples were analyzed for stable isotope characteristics (<span>({delta ^2 H, delta ^{18} O})</span>) and moisture content. Collection of underground water samples inside and outside the mining area for conductivity analysis.</p><h3 data-test=\"abstract-sub-heading\">Results and discussion</h3><p>Soil evaporation loss in the mine’s inner dump was significantly higher than in the grassland, with rates of 22.26% for <span>({delta ^{18} O})</span> and 6.61% for <span>({delta ^2 H})</span>. The limiting depth of soil evaporation at the mine was found to be 260 cm, compared to 200 cm in the grassland. The increased underground water conductivity in the mine area was linked to heightened soil evaporation loss. Isotopic profiling of the soil indicated that the open-pit mining led to deeper preferential flow infiltration during heavy precipitation, reaching 280 cm in the mine area versus 220 cm in the grassland.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>The surface soil moisture content (SMC) increased due to mining activities intensified water-heat exchanges with the atmosphere, leading to more frequent and severe wet-dry cycles. This study provides a comprehensive understanding of open-pit mining’s impact on SMC, evaporation, and infiltration in semi-arid areas, offering critical insights for ecological reclamation and sustainable mine construction.</p>","PeriodicalId":17139,"journal":{"name":"Journal of Soils and Sediments","volume":"0 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141505495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Review on the effects of biochar amendment on soil microorganisms and enzyme activity 生物炭改良剂对土壤微生物和酶活性的影响综述
IF 3.6 3区 农林科学
Journal of Soils and Sediments Pub Date : 2024-06-21 DOI: 10.1007/s11368-024-03841-7
Xinxin Jin, Tongxin Zhang, Yuetong Hou, Roland Bol, Xiaojie Zhang, Min Zhang, Na Yu, Jun Meng, Hongtao Zou, Jingkuan Wang
{"title":"Review on the effects of biochar amendment on soil microorganisms and enzyme activity","authors":"Xinxin Jin, Tongxin Zhang, Yuetong Hou, Roland Bol, Xiaojie Zhang, Min Zhang, Na Yu, Jun Meng, Hongtao Zou, Jingkuan Wang","doi":"10.1007/s11368-024-03841-7","DOIUrl":"https://doi.org/10.1007/s11368-024-03841-7","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Purpose</h3><p>The multiple benefits of biochar use as a soil amendment has garnered global attention. Biochar addition is a crucial factor to improve soil biomass, soil enzyme activities, microbial biomass and improve soil nutrient utilization rate. However, the precise mechanism of effects of biochar addition on microbial community structure and diversity, as well as enzyme activity, remains unclear, especially for biochar obtained from different pyrolysis temperatures and variable quantities in which it is applied to soil.</p><h3 data-test=\"abstract-sub-heading\">Materials and methods</h3><p>We compiled and summarized the existing literature on the impacts of biochar on microorganisms and enzymes, with a specific on articles published over a five-year period (2018–2022). This review provides a comprehensive review of the relevant literature on enzyme activity, microbial diversity, community structure and abundance following biochar amendment in soil, and further elucidates the underlying mechanisms of biochar-induced effects on various factors.</p><h3 data-test=\"abstract-sub-heading\">Results and discussion</h3><p>The impact of biochar on soil microorganisms could be categorized into three aspects: (1) biochar, due to its porous structure and high surface area, functions as a sanctuary for soil microorganisms; (2) biochar provides essential elements such as carbon (C) and nitrogen (N) sources to soil microorganisms, and finally (3) biochar improves the survival conditions of soil microorganisms by modifying soil pH, CEC, aggregation, and enzyme activity. Importantly, biochar produced at lower pyrolysis temperatures provides valuable C and N for soil microorganisms. Whereas biochar obtained at higher pyrolysis temperatures contains much less active C and N. However, it still contributes to microbial nutrition through diverse mechanisms, e.g., nutrient immobilization and increased nutrients residence time through its bonding with soil labile C.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>This review found that the type of source material and pyrolysis temperature were the primary determinants in the impacts of biochar on soil microbial abundance, community structure, and diversity.</p>","PeriodicalId":17139,"journal":{"name":"Journal of Soils and Sediments","volume":"34 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141512799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A genetic algorithm-optimized backpropagation neural network model for predicting soil moisture content using spectral data 利用光谱数据预测土壤含水量的遗传算法优化反向传播神经网络模型
IF 3.6 3区 农林科学
Journal of Soils and Sediments Pub Date : 2024-06-19 DOI: 10.1007/s11368-024-03792-z
Jiawei Wang, Yongyi Wu, Yulu Zhang, Honghao Wang, Hong Yan, Hua Jin
{"title":"A genetic algorithm-optimized backpropagation neural network model for predicting soil moisture content using spectral data","authors":"Jiawei Wang, Yongyi Wu, Yulu Zhang, Honghao Wang, Hong Yan, Hua Jin","doi":"10.1007/s11368-024-03792-z","DOIUrl":"https://doi.org/10.1007/s11368-024-03792-z","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Purpose</h3><p>Accurate assessment of soil moisture content (SMC) is crucial for applications in climate science, hydrology, ecology, and agriculture. However, conventional SMC characterization and measurement are expensive, time-consuming, and have negative effects on soil. Recently, the application of multispectral technology provides a new idea for SMC accurate detection. The objective of this study was to develop and compare regression and machine learning algorithms to estimate SMC from multispectral images.</p><h3 data-test=\"abstract-sub-heading\">Materials and methods</h3><p>A multispectral sensor was used to collect spectral images of 125 soil samples from five distinct soil textures in Shanxi province at varying degrees of soil moisture, ranging from arid to fully saturated. A set of seven spectral parameters was derived from images, and predictive relationships were developed against laboratory-measured SMC. A linear regression (LR) model and a backpropagation neural network model based on genetic algorithm optimization (GA-BP) were compared in this study to predict SMC.</p><h3 data-test=\"abstract-sub-heading\">Results and discussion</h3><p>The results showed that (1) the spectral reflectance and SMC exhibit a clear negative correlation, and the lower the SMC, the larger the spectral reflectance is. (2) The GA-BP neural network model exhibits higher prediction accuracy and performance (<i>R</i><sup>2</sup> = 0.978 ~ 0.990, <i>RMSE</i> = 0.366 ~ 0.799%, <i>MAE</i> = 0.360 ~ 0.890%). (3) The GA-BP model exhibits the excellent inversion precision for the fine sand soil (<i>R</i><sup>2</sup> = 0.990, <i>RMSE</i> = 0.518%, <i>MAE</i> = 0.360%).</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>This study introduces an effective methodology for accurate estimation of SMC using multispectral remote sensing technology. It further underscores the significant effectiveness of employing backpropagation neural networks and genetic algorithms in SMC prediction, providing a rapid, precise, non-intrusive, and practical approach towards precision agriculture.</p>","PeriodicalId":17139,"journal":{"name":"Journal of Soils and Sediments","volume":"209 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141512716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信