{"title":"Determination of the scope of the experimental-calculation method for measuring the touch voltage","authors":"D. Koliushko, S. Rudenko, A. N. Saliba","doi":"10.20998/2074-272x.2023.1.11","DOIUrl":"https://doi.org/10.20998/2074-272x.2023.1.11","url":null,"abstract":"The work is devoted to the improvement of methods for determining the normalized parameters of the grounding system (GS) of operating power stations and substations. The aim of the work is determination of the scope of the experimental-calculated method for measuring the touch voltage, depending on short-circuit (SC) current value for the given dimensions of the GS and the type of soil. Methodology. The study analyzed the non-linear effect of the SC current value on the touch voltage, taking into account such factors as the GS size and the soil type. The calculation used statistical data on the GS size and the characteristics of the soil obtained by monitoring the GS state of 585 operating electrical substations with a voltage class of 110-750 kV using the induction method and the method of vertical soil sounding, respectively. For the calculation, a mathematical model of a non-equipotential GS located in a three-layer semiconductor space with plane-parallel boundaries was used, this model was developed using the method of integro-differential equations. Results. To determine the scope of the method, in this work it is proposed to use the linearity criterion, which is determined due to the ratio of the constant of reduced touch voltage to the current value. The example shows the method for determining the threshold minimum and maximum values of the measuring current of the soil, in the range between which the measurements by experimental-calculated methods are impossible. A table of threshold current values has been formed and recommendations have been developed on the possibility of using experimental-measuring methods for determining the touch voltage depending on the GS size and soil characteristics.","PeriodicalId":170736,"journal":{"name":"Electrical Engineering & Electromechanics","volume":"24 24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128463406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. A. Hessad, Z. Bouchama, S. Benaggoune, K. Behih
{"title":"Cascade sliding mode maximum power point tracking controller for photovoltaic systems","authors":"M. A. Hessad, Z. Bouchama, S. Benaggoune, K. Behih","doi":"10.20998/2074-272x.2023.1.07","DOIUrl":"https://doi.org/10.20998/2074-272x.2023.1.07","url":null,"abstract":"Introduction. Constant increases in power consumption by both industrial and individual users may cause depletion of fossil fuels and environmental pollution, and hence there is a growing interest in clean and renewable energy resources. Photovoltaic power generation systems are playing an important role as a clean power electricity source in meeting future electricity demands. Problem. All photovoltaic systems have two problems; the first one being the very low electric-power generation efficiency, especially under low-irradiation states; the second resides in the interdependence of the amount of the electric power generated by solar arrays and the ever changing weather conditions. Load mismatch can occur under these weather varying conditions such that maximum power is not extracted and delivered to the load. This issue constitutes the so-called maximum power point tracking problem. Aim. Many methods have been developed to determine the maximum power point under all conditions. There are various methods, in most of them based on the well-known principle of perturb and observe. In this method, the operating point oscillates at a certain amplitude, no matter whether the maximum power point is reached or not. That is, this oscillation remains even in the steady state after reaching the maximum power point, which leads to power loss. This is an essential drawback of the previous method. In this paper, a cascade sliding mode maximum power point tracking control for a photovoltaic system is proposed to overcome above mentioned problems. Methodology. The photovoltaic system is mainly composed of a solar array, DC/DC boost converter, cascade sliding mode controller, and an output load. Two sliding mode control design strategies are joined to construct the proposed controller. The primary sliding mode algorithm is designed for maximum power point searching, i.e., to track the output reference voltage of the solar array. This voltage is used to manipulate the setpoint of the secondary sliding mode controller, which is used via the DC-DC boost converter to achieve maximum power output. Results. This novel approach provides a good transient response, a low tracking error and a very fast reaction against the solar radiation and photovoltaic cell temperature variations. The simulation results demonstrate the effectiveness of the proposed approach in the presence of environmental disturbances.","PeriodicalId":170736,"journal":{"name":"Electrical Engineering & Electromechanics","volume":"57 3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131488213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Indirect adaptive fuzzy finite time synergetic control for power systems","authors":"A. Khatir, Z. Bouchama, S. Benaggoune, N. Zerroug","doi":"10.20998/2074-272x.2023.1.08","DOIUrl":"https://doi.org/10.20998/2074-272x.2023.1.08","url":null,"abstract":"Introduction. Budget constraints in a world ravenous for electrical power have led utility companies to operate generating stations with full power and sometimes at the limit of stability. In such drastic conditions the occurrence of any contingency or disturbance may lead to a critical situation starting with poorly damped oscillations followed by loss of synchronism and power system instability. In the past decades, the utilization of supplementary excitation control signals for improving power system stability has received much attention. Power system stabilizers (PSS) are used to generate supplementary control signals for the excitation system in order to damp low-frequency oscillations caused by load disturbances or short-circuit faults. Problem. Adaptive power system stabilizers have been proposed to adequately deal with a wide range of operating conditions, but they suffer from the major drawback of requiring parameter model identification, state observation and on-line feedback gain computation. Power systems are nonlinear systems, with configurations and parameters that fluctuate with time that which require a fully nonlinear model and an adaptive control scheme for a practical operating environment. A new nonlinear adaptive fuzzy approach based on synergetic control theory which has been developed for nonlinear power system stabilizers to overcome above mentioned problems. Aim. Synergetic control theory has been successfully applied in the design of power system stabilizers is a most promising robust control technique relying on the same principle of invariance found in sliding mode control, but without its chattering drawback. In most of its applications, synergetic control law was designed based on an asymptotic stability analysis and the system trajectories evolve to a specified attractor reaching the equilibrium in an infinite time. In this paper an indirect finite time adaptive fuzzy synergetic power system stabilizer for damping local and inter-area modes of oscillations for power systems is presented. Methodology. The proposed controller design is based on an adaptive fuzzy control combining a synergetic control theory with a finite-time attractor and Lyapunov synthesis. Enhancing existing adaptive fuzzy synergetic power system stabilizer, where fuzzy systems are used to approximate unknown system dynamics and robust synergetic control for only providing asymptotic stability of the closed-loop system, the proposed technique procures finite time convergence property in the derivation of the continuous synergetic control law. Analytical proofs for finite time convergence are presented confirming that the proposed adaptive scheme can guarantee that system signals are bounded and finite time stability obtained. Results. The performance of the proposed stabilizer is evaluated for a single machine infinite bus system and for a multi machine power system under different type of disturbances. Simulation results are compared to those obta","PeriodicalId":170736,"journal":{"name":"Electrical Engineering & Electromechanics","volume":"30 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131319197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
E. Parimalasundar, R. Senthil Kumar, V. S. Chandrika, K. Suresh
{"title":"Fault diagnosis in a five-level multilevel inverter using an artificial neural network approach","authors":"E. Parimalasundar, R. Senthil Kumar, V. S. Chandrika, K. Suresh","doi":"10.20998/2074-272x.2023.1.05","DOIUrl":"https://doi.org/10.20998/2074-272x.2023.1.05","url":null,"abstract":"Introduction. Cascaded H-bridge multilevel inverters (CHB-MLI) are becoming increasingly used in applications such as distribution systems, electrical traction systems, high voltage direct conversion systems, and many others. Despite the fact that multilevel inverters contain a large number of control switches, detecting a malfunction takes a significant amount of time. In the fault switch configurations diode included for freewheeling operation during open-fault condition. During short circuit fault conditions are carried out by the fuse, which can reveal the freewheeling current direction. The fault category can be identified independently and also failure of power switches harmed by the functioning and reliability of CHB-MLI. This paper investigates the effects and performance of open and short switching faults of multilevel inverters. Output voltage characteristics of 5 level MLI are frequently determined from distinctive switch faults with modulation index value of 0.85 is used during simulation analysis. In the simulation experiment for the modulation index value of 0.85, one second open and short circuit faults are created for the place of faulty switch. Fault is identified automatically by means of artificial neural network (ANN) technique using sinusoidal pulse width modulation based on distorted total harmonic distortion (THD) and managed by its own. The novelty of the proposed work consists of a fast Fourier transform (FFT) and ANN to identify faulty switch. Purpose. The proposed architecture is to identify faulty switch during open and short failures, which has to be reduced THD and make the system in reliable operation. Methods. The proposed topology is to be design and evaluate using MATLAB/Simulink platform. Results. Using the FFT and ANN approaches, the normal and faulty conditions of the MLI are explored, and the faulty switch is detected based on voltage changing patterns in the output. Practical value. The proposed topology has been very supportive for implementing non-conventional energy sources based multilevel inverter, which is connected to large demand in grid.","PeriodicalId":170736,"journal":{"name":"Electrical Engineering & Electromechanics","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123365041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Method of calculation of electromagnetic torque and energy losses of three-phase induction motors when powered by a regulated single-phase voltage","authors":"Y. Shurub, V. Vasilenkov, Yu. L. Tsitsyurskiy","doi":"10.20998/2074-272x.2022.6.02","DOIUrl":"https://doi.org/10.20998/2074-272x.2022.6.02","url":null,"abstract":"Introduction. Single-phase power supply of induction motors is used in public utilities, in microclimate control systems for remote agricultural consumers, in water supply and pipeline transport systems, etc. In practice, there is the use of induction motors with three-phase stator winding in the conditions of single-phase power supply. Starting and operating capacitors are used to enable their operation when powered by a single-phase network. Problem. There are many fairly accurate methods for calculating the characteristics of an induction motor in asymmetric, including single-phase, modes of operation, but they are based on differential equations, which does not allow to obtain analytical expressions for preliminary analysis and synthesis of such systems. Goal. The purpose of this article is to develop the analytical method of definition of electromagnetic torque and energy losses of voltage-regulated three-phase induction motors working according to the scheme of single-phase inclusion with the phase-shifting capacitor. Methodology. The method is based on the theory of symmetric components and analysis of replacement schemes of induction machine in motor and generator modes. Results. The analysis of the obtained data shows that at a constant value of the phase-shifting capacitor capacity induction motor working according to the scheme of single-phase inclusion has a minimum of losses at one value of slip at different values of supply voltage. Therefore, if you keep this slip constant when the load changes, you can achieve a mode of minimizing losses at a constant value of the capacity, optimal for this slip. This shows that the thyristor voltage regulator can be used as an energy-saving element under variable load, while the capacitance of the phase-shifting capacitor can remain constant when changing the load in a wide range provided that this slip is stabilized. Originality. The developed method allows to obtain analytical expressions for comparative analysis of electromagnetic torque and energy losses of three-phase induction motors powered by a single-phase network at different values of the capacity of the phase-shifting capacitor, supply voltage for different variants of schemes for including three-phase induction motors in a single-phase network. Practical value. Based on the developed analytical method, the optimal parameters of phase-shifting capacitors and rational schemes for including three-phase induction motors in a single-phase network can be determined.","PeriodicalId":170736,"journal":{"name":"Electrical Engineering & Electromechanics","volume":"237 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115236794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fault detection and monitoring of solar photovoltaic panels using internet of things technology with fuzzy logic controller","authors":"R. Shweta, S. Sivagnanam, K. Kumar","doi":"10.20998/2074-272x.2022.6.10","DOIUrl":"https://doi.org/10.20998/2074-272x.2022.6.10","url":null,"abstract":"Purpose. This article proposes a new control monitoring grid connected hybrid system. The proposed system, automatic detection or monitoring of fault occurrence in the photovoltaic application is extremely mandatory in the recent days since the system gets severely damaged by the occurrence of different faults, which in turn results in performance degradation and malfunctioning of the system. The novelty of the proposed work consists in presenting solar power monitoring and power control based Internet of things algorithm. In consideration to this viewpoint, the present study proposes the Internet of Things (IoT) based automatic fault detection approach, which is highly beneficial in preventing the system damage since it is capable enough to identify the emergence of fault on time without any complexities to generate Dc voltage and maintain the constant voltage for grid connected hybrid system. Methods. The proposed DC-DC Boost converter is employed in this system to maximize the photovoltaic output in an efficient manner whereas the Perturb and Observe algorithm is implemented to accomplish the process of maximum power point tracking irrespective of the changes in the climatic conditions and then the Arduino microcontroller is employed to analyse the faults in the system through different sensors. Eventually, the IoT based monitoring using fuzzy nonlinear autoregressive exogenous approach is implemented for classifying the faults in an efficient manner to provide accurate solution of fault occurrence for preventing the system from failure or damage. Results. The results obtained clearly show that the power quality issue, the proposed system to overcome through monitoring of fault solar panel and improving of power quality. The obtained output from the hybrid system is fed to the grid through a 3ϕ voltage source inverter is more reliable and maintained power quality. The power obtained from the entire hybrid setup is measured by the sensor present in the IoT based module. The experimental validation is carried out in ATmega328P based Arduino UNO for validating the present system in an efficient manner. Originality. The automatic Fault detection and monitoring of solar photovoltaic system and compensation of grid stability in distribution network based IoT approach is utilized along with sensor controller. Practical value. The work concerns a network comprising of electronic embedded devices, physical objects, network connections, and sensors enabling the sensing, analysis, and exchange of data. It tracks and manages network statistics for safe and efficient power delivery. The study is validated by the simulation results based on real interfacing and real time implementation.","PeriodicalId":170736,"journal":{"name":"Electrical Engineering & Electromechanics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125498928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Performance investigation of modular multilevel inverter topologies for photovoltaic applications with minimal switches","authors":"E. Parimalasundar, N. Kumar, P. Geetha, K. Suresh","doi":"10.20998/2074-272x.2022.6.05","DOIUrl":"https://doi.org/10.20998/2074-272x.2022.6.05","url":null,"abstract":"Introduction. In recent years, a growing variety of technical applications have necessitated the employment of more powerful equipment. Power electronics and megawatt power levels are required in far too many medium voltage motor drives and utility applications. It is challenging to incorporate a medium voltage grid with only one power semiconductor that has been extensively modified. As a result, in high power and medium voltage settings, multiple power converter structure has been offered as a solution. A multilevel converter has high power ratings while also allowing for the utilization of renewable energy sources. Renewable energy sources such as photovoltaic, wind, and fuel cells may be readily connected to a multilevel inverter topology for enhanced outcomes. The novelty of the proposed work consists of a novel modular inverter structure for solar applications that uses fewer switches. Purpose. The proposed architecture is to decrease the number of switches and Total Harmonic Distortions. There is no need for passive filters, and the proposed design enhances power quality by creating distortion-free sinusoidal output voltage as the level count grows while also lowering power losses. Methods. The proposed topology is implemented with MATLAB / Simulink, using gating pulses and various pulse width modulation methodologies. Moreover, the proposed model also has been validated and compared to the hardware system. Results. Total harmonic distortion, number of power switches, output voltage and number of DC sources are compared with conventional topologies. Practical value. The proposed topology has been very supportive for implementing photovoltaic based multilevel inverter, which is connected to large demand in grid.","PeriodicalId":170736,"journal":{"name":"Electrical Engineering & Electromechanics","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114478288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Power quality improvement by using photovoltaic based shunt active harmonic filter with Z-source inverter converter","authors":"B. V. Sai Thrinath, S. Prabhu, B. Meghya Nayak","doi":"10.20998/2074-272x.2022.6.06","DOIUrl":"https://doi.org/10.20998/2074-272x.2022.6.06","url":null,"abstract":"Introduction. The major source of energy for a long time has been fossil fuels, however this has its drawbacks because of their scarcity, exhaustibility, and impossibility of reusing them. Presently, a shunt active harmonic filter-equipped two-stage solar photovoltaic system is showing off its performance shunt active harmonic filter. The global power system has been impacted by current harmonics during the most modern industrial revolution. Novelty. The proposed work is innovative, by adopting the hysteresis modulation mode with Z-source inverter to enhance the performance of the system. Furthermore, the shunt active harmonic filter also get assists in this system for better improvement in the quality of power. Purpose. By incorporating an impedance source inverter and a photovoltaic shunt active harmonic filter methods, harmonic issues are mitigated. Methods. Load compensation is one of the services that the shunt active harmonic filter offers, in addition to harmonic compensation, power factor correction, and many other functions. The current pulse width modulation voltage source inverter method is more expensive, requires two converters owing to its two-stage conversion, has significant switching losses, and has a low rate of the reaction. The new model, in which the voltage source inverter is substituted out for a Z-source inverter converter, has been developed in order to address the problems of the existing system. Results. Rather than using a hybrid of DC-DC and DC-AC converters, the suggested system uses a shunt active harmonic filter that is powered by a photovoltaic source using a Z-source inverter. Utilizing Z-source inverter helps to address the present issues with conventional configurations. Practical value. By using software MATLAB/Simulink, this photovoltaic shunt active harmonic filter technique is analyzed. Shunt active harmonic filter, which produces compensatory current from the reference current obtained as from main supply, is powered by the photovoltaic array.","PeriodicalId":170736,"journal":{"name":"Electrical Engineering & Electromechanics","volume":"52 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115866730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
B. Kuznetsov, T. Nikitina, I. Bovdui, O. Voloshko, V. Kolomiets, B. Kobylianskyi
{"title":"Synthesis of an effective system of active shielding of the magnetic field of a power transmission line with a horizontal arrangement of wires using a single compensation winding","authors":"B. Kuznetsov, T. Nikitina, I. Bovdui, O. Voloshko, V. Kolomiets, B. Kobylianskyi","doi":"10.20998/2074-272x.2022.6.03","DOIUrl":"https://doi.org/10.20998/2074-272x.2022.6.03","url":null,"abstract":"Aim. The theoretical and experimental studies of the effectiveness of reducing the level of the magnetic field in two-storey cottage of the old building of a power transmission line with a horizontal arrangement of wires by means of active shielding with single compensation winding. Methodology Spatial location coordinates of the compensating winding and the current in the shielding winding were determined during the design of systems of active screening based on solution of the vector game, in whith the vector payoffs is calculated based on Biot-Savart's law. The solution of this vector game calculated based on algorithms of multi-swarm multi-agent optimization. Results The results of theoretical and experimental studies of the effectiveness of reducing the level of the magnetic field in two-storey cottage of the old building of a power transmission line with a horizontal arrangement of wires by means of active shielding with single compensation winding are presented. Originality. For the first time, the theoretical and experimental studies of the effectiveness of reducing the level of the magnetic field in two-storey cottage of the old building of a power transmission line with a horizontal arrangement of wires by means of active shielding with single compensation winding are considered. Practical value. From the point of view of the practical implementation it is shown the possibility to reduce the level of magnetic field in two-storey cottage of the old building from power transmission line with a horizontal arrangement of wires by means of active shielding with single compensation winding to the sanitary standards of Ukraine.","PeriodicalId":170736,"journal":{"name":"Electrical Engineering & Electromechanics","volume":"59 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121964020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On modeling and real-time simulation of a robust adaptive controller applied to a multicellular power converter","authors":"R. Hamdi, A. Hadri Hamida, O. Bennis","doi":"10.20998/2074-272x.2022.6.08","DOIUrl":"https://doi.org/10.20998/2074-272x.2022.6.08","url":null,"abstract":"Introduction. This paper describes the simulation and the robustness assessment of a DC-DC power converter designed to interface a dual-battery conversion system. The adopted converter is a Buck unidirectional and non-isolated converter, composed of three cells interconnected in parallel and operating in continuous conduction mode. Purpose. In order to address the growing challenges of high switching frequencies, a more stable, efficient, and fixed-frequency-operating power system is desired. Originality. Conventional sliding mode controller suffers from high-frequency oscillation caused by practical limitations of system components and switching frequency variation. So, we have explored a soft-switching technology to deal with interface problems and switching losses, and we developed a procedure to choose the high-pass filter parameters in a sliding mode-controlled multicell converter. Methods. We suggest that the sliding mode is controlled by hysteresis bands as the excesses of the band. This delay in state exchanges gives a signal to control the switching frequency of the converter, which, in turn, produces a controlled trajectory. We are seeking an adaptive current control solution to address this issue and adapt a variable-bandwidth of the hysteresis modulation to mitigate nonlinearity in conventional sliding mode control, which struggles to set the switching frequency. Chatter problems are therefore avoided. A boundary layer-based control scheme allows multicell converters to operate with a fixed-switching-frequency. Practical value. Simulation studies in the MATLAB / Simulink environment are performed to analyze system performance and assess its robustness and stability. Thus, our converter is more efficient and able to cope with parametric variation.","PeriodicalId":170736,"journal":{"name":"Electrical Engineering & Electromechanics","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115866018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}