{"title":"Densifying Solid Electrolytes through Surface Lubrication to Mitigate Shorting of Solid-State Batteries","authors":"Mengchen Liu, Ershuang Lu, Shen Wang, Shijie Feng, Junwei Gao, Wenlin Yan, Jeong Woo Oh, Min-Sang Song, Jian Luo and Ping Liu*, ","doi":"10.1021/acsenergylett.4c0338710.1021/acsenergylett.4c03387","DOIUrl":"https://doi.org/10.1021/acsenergylett.4c03387https://doi.org/10.1021/acsenergylett.4c03387","url":null,"abstract":"<p >Lithium dendrite penetration has caused internal short-circuits that have limited the life of lithium metal all-solid-state batteries. Defects and pores in dry compacted solid electrolytes promote dendrite growth. This study introduces an organic molecular coating, 1-undecanethiol, that anchors strongly to the surface of Li<sub>6</sub>PS<sub>5</sub>Cl and functions as an adsorbed lubrication layer, thus reducing interparticle friction, facilitating particle rearrangement and densification. Under a compacting pressure of 375 MPa, the 1-undecanethiol coated Li<sub>6</sub>PS<sub>5</sub>Cl achieves a porosity of 1.7%, a substantial reduction from the porosity of 10.9% for Li<sub>6</sub>PS<sub>5</sub>Cl. As a result, Li symmetric cells incorporating the 1-undecanethiol densified Li<sub>6</sub>PS<sub>5</sub>Cl pellet exhibit up to a 4-fold increase in critical current density and demonstrate remarkable 4600 h cycling at a current density of 1 mA cm<sup>–2</sup>. Likewise, the Li||LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> full cell shows a 4-fold increase in cycling current density. This work points to the potential of organic surface engineering to enable long-life solid-state batteries.</p>","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"10 3","pages":"1389–1396 1389–1396"},"PeriodicalIF":19.3,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143608971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Direct 3D Lithography of Reversible Photochromic Patterns with Tunable Luminescence in Amorphous Transparent Media","authors":"Heping Zhao, Jiayan Liao, Shasha Fu, Yingzhu Zi, Xue Bai, Yang Ci, Yueteng Zhang, Xinhao Cai, Yuewei Li, Yangke Cun, Anjun Huang, Yue Liu, Jianbei Qiu, Zhiguo Song, Guogang Li, Ji Zhou, Zhengwen Yang","doi":"10.1021/acsenergylett.5c00024","DOIUrl":"https://doi.org/10.1021/acsenergylett.5c00024","url":null,"abstract":"The integration of reversible photochromism and multicolor luminescence modulation in transparent glass offers significant potential for high-capacity, nonvolatile 3D optical storage. However, achieving effective multicolor luminescence modulation and 3D patterning remains a challenge. This study introduces a Mn<sup>2+</sup>/Sb<sup>5+</sup> charge compensation mechanism to induce purple photochromism in gallium silicate glass via the Mn<sup>2+</sup> → Mn<sup>3+</sup> transition under 532 nm laser irradiation. The effect is fully reversible, with efficient thermal erasure. By codoping Tb<sup>3+</sup> and Mn<sup>2+</sup>, wavelength-independent red and green luminescence modulation enables multidimensional optical encoding. Arbitrary 3D photochromic patterns are directly inscribed using a 532 nm laser and decoded via tunable luminescence. This multimodal system advances 4D optical storage by combining 3D spatial dimensions with tunable luminescence intensity multiplexing. Mn<sup>2+</sup>/Tb<sup>3+</sup> doped gallium silicate glass represents a breakthrough for 3D information display, data encryption, and insights into photochromic mechanisms in transition-metal-doped photonic systems.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"51 1","pages":""},"PeriodicalIF":22.0,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143495796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Densifying Solid Electrolytes through Surface Lubrication to Mitigate Shorting of Solid-State Batteries","authors":"Mengchen Liu, Ershuang Lu, Shen Wang, Shijie Feng, Junwei Gao, Wenlin Yan, Jeong Woo Oh, Min-Sang Song, Jian Luo, Ping Liu","doi":"10.1021/acsenergylett.4c03387","DOIUrl":"https://doi.org/10.1021/acsenergylett.4c03387","url":null,"abstract":"Lithium dendrite penetration has caused internal short-circuits that have limited the life of lithium metal all-solid-state batteries. Defects and pores in dry compacted solid electrolytes promote dendrite growth. This study introduces an organic molecular coating, 1-undecanethiol, that anchors strongly to the surface of Li<sub>6</sub>PS<sub>5</sub>Cl and functions as an adsorbed lubrication layer, thus reducing interparticle friction, facilitating particle rearrangement and densification. Under a compacting pressure of 375 MPa, the 1-undecanethiol coated Li<sub>6</sub>PS<sub>5</sub>Cl achieves a porosity of 1.7%, a substantial reduction from the porosity of 10.9% for Li<sub>6</sub>PS<sub>5</sub>Cl. As a result, Li symmetric cells incorporating the 1-undecanethiol densified Li<sub>6</sub>PS<sub>5</sub>Cl pellet exhibit up to a 4-fold increase in critical current density and demonstrate remarkable 4600 h cycling at a current density of 1 mA cm<sup>–2</sup>. Likewise, the Li||LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> full cell shows a 4-fold increase in cycling current density. This work points to the potential of organic surface engineering to enable long-life solid-state batteries.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"14 1","pages":""},"PeriodicalIF":22.0,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143495797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Charge-Phonon Coupling in Tin Halide Perovskites","authors":"Lorenzo Gatto, Isabella Poli, Daniele Meggiolaro, Federico Grandi, Giulia Folpini, Antonella Treglia, Eugenio Cinquanta, Annamaria Petrozza, Filippo De Angelis, Caterina Vozzi","doi":"10.1021/acsenergylett.4c02558","DOIUrl":"https://doi.org/10.1021/acsenergylett.4c02558","url":null,"abstract":"Tin halide perovskites are promising materials to replace lead-based materials for perovskite optoelectronics, yet their performance is limited by their high self-p-doping. To quantify the impact of p-doping on carrier dynamics, we combine terahertz spectroscopy and density functional theory calculations to investigate the coupling of charge carriers to the lattice in prototypical tin-based perovskites. Doping is shown to influence the charge-phonon interactions significantly. We identify the formation of polarons at doping densities below 10<sup>18</sup> cm<sup>–3</sup>, while a Drude-like response is found for photogenerated carriers at higher charge density, confirming that for highly p-doped systems, the terahertz response is dominated by quasi-free charge carriers. Our study suggests that charge-phonon coupling could serve as a proxy for the self-p-doping level, offering additional insights into fundamental charge-transport properties of tin halide perovskites and their potential optimization for photovoltaic applications.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"6 1","pages":""},"PeriodicalIF":22.0,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143495798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ACS Energy Letters Pub Date : 2025-02-25DOI: 10.1021/acsenergylett.4c0255810.1021/acsenergylett.4c02558
Lorenzo Gatto, Isabella Poli, Daniele Meggiolaro, Federico Grandi, Giulia Folpini, Antonella Treglia, Eugenio Cinquanta*, Annamaria Petrozza, Filippo De Angelis and Caterina Vozzi,
{"title":"Charge-Phonon Coupling in Tin Halide Perovskites","authors":"Lorenzo Gatto, Isabella Poli, Daniele Meggiolaro, Federico Grandi, Giulia Folpini, Antonella Treglia, Eugenio Cinquanta*, Annamaria Petrozza, Filippo De Angelis and Caterina Vozzi, ","doi":"10.1021/acsenergylett.4c0255810.1021/acsenergylett.4c02558","DOIUrl":"https://doi.org/10.1021/acsenergylett.4c02558https://doi.org/10.1021/acsenergylett.4c02558","url":null,"abstract":"<p >Tin halide perovskites are promising materials to replace lead-based materials for perovskite optoelectronics, yet their performance is limited by their high self-p-doping. To quantify the impact of p-doping on carrier dynamics, we combine terahertz spectroscopy and density functional theory calculations to investigate the coupling of charge carriers to the lattice in prototypical tin-based perovskites. Doping is shown to influence the charge-phonon interactions significantly. We identify the formation of polarons at doping densities below 10<sup>18</sup> cm<sup>–3</sup>, while a Drude-like response is found for photogenerated carriers at higher charge density, confirming that for highly p-doped systems, the terahertz response is dominated by quasi-free charge carriers. Our study suggests that charge-phonon coupling could serve as a proxy for the self-p-doping level, offering additional insights into fundamental charge-transport properties of tin halide perovskites and their potential optimization for photovoltaic applications.</p>","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"10 3","pages":"1382–1388 1382–1388"},"PeriodicalIF":19.3,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsenergylett.4c02558","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143608933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Superionic Conductor Lithium Argyrodite Sulfide of Li7–x(GeSi)(1–x)/2SbxS5I toward All-Solid-State Lithium-Ion Batteries","authors":"Yuxin Ma, Daokuan Jin, Haodong Shi, Rui Li, Yutao Niu, Yunyun Xu, Cong Dong, Yangyang Liu, Rui Yang, Guiming Zhong, Chunyang Wang, Zhizhen Zhang, Zhangquan Peng, Zhong-Shuai Wu","doi":"10.1021/acsenergylett.4c03115","DOIUrl":"https://doi.org/10.1021/acsenergylett.4c03115","url":null,"abstract":"Li<sub>6</sub>PS<sub>5</sub>I based solid-state electrolytes (SSEs) show promising interface compatibility for all-solid-state batteries (ASSBs), but they still suffer from limited ionic conductivity. Herein, a superionic conductor lithium argyrodite sulfide, Li<sub>7–<i>x</i></sub>(GeSi)<sub>(1–<i>x</i>)/2</sub>Sb<sub><i>x</i></sub>S<sub>5</sub>I, was developed through multi-cation substitution of Ge, Si, and Sb for P, increasing configurational entropy of the Li<sub>6</sub>PS<sub>5</sub>I. This approach enhanced Li<sup>+</sup> content and anion site disorder, leading to a low activation energy of 0.17 eV for Li<sup>+</sup> migration, and consequently a high cold-pressed ionic conductivity of 12.7 mS cm<sup>–1</sup>, and a record value of 32.2 mS cm<sup>–1</sup> after hot-pressing. When incorporating Li<sub>3</sub>InCl<sub>6</sub> as the catholyte and interlayer, the LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub>@Li<sub>3</sub>InCl<sub>6</sub>|Li<sub>3</sub>InCl<sub>6</sub>|Li<sub>20/3</sub>(GeSiSb)<sub>1/3</sub>S<sub>5</sub>I|Li-In ASSBs exhibited a high capacity of 219 mAh g<sup>–1</sup> at 0.1 C, and a notable capacity of 135 mAh g<sup>–1</sup> with 84.4% retention at 1 C after 550 cycles. Our ASSBs demonstrated stable cycling across −20 to 60 °C and operated well at an ultrahigh cathode loading of 100 mg cm<sup>–2</sup>. These findings advance sulfide SSEs for high-performance and wide-temperature ASSBs.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"3 1","pages":""},"PeriodicalIF":22.0,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143486432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Superionic Conductor Lithium Argyrodite Sulfide of Li7–x(GeSi)(1–x)/2SbxS5I toward All-Solid-State Lithium-Ion Batteries","authors":"Yuxin Ma, Daokuan Jin, Haodong Shi*, Rui Li, Yutao Niu, Yunyun Xu, Cong Dong, Yangyang Liu, Rui Yang, Guiming Zhong, Chunyang Wang, Zhizhen Zhang, Zhangquan Peng and Zhong-Shuai Wu*, ","doi":"10.1021/acsenergylett.4c0311510.1021/acsenergylett.4c03115","DOIUrl":"https://doi.org/10.1021/acsenergylett.4c03115https://doi.org/10.1021/acsenergylett.4c03115","url":null,"abstract":"<p >Li<sub>6</sub>PS<sub>5</sub>I based solid-state electrolytes (SSEs) show promising interface compatibility for all-solid-state batteries (ASSBs), but they still suffer from limited ionic conductivity. Herein, a superionic conductor lithium argyrodite sulfide, Li<sub>7–<i>x</i></sub>(GeSi)<sub>(1–<i>x</i>)/2</sub>Sb<sub><i>x</i></sub>S<sub>5</sub>I, was developed through multi-cation substitution of Ge, Si, and Sb for P, increasing configurational entropy of the Li<sub>6</sub>PS<sub>5</sub>I. This approach enhanced Li<sup>+</sup> content and anion site disorder, leading to a low activation energy of 0.17 eV for Li<sup>+</sup> migration, and consequently a high cold-pressed ionic conductivity of 12.7 mS cm<sup>–1</sup>, and a record value of 32.2 mS cm<sup>–1</sup> after hot-pressing. When incorporating Li<sub>3</sub>InCl<sub>6</sub> as the catholyte and interlayer, the LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub>@Li<sub>3</sub>InCl<sub>6</sub>|Li<sub>3</sub>InCl<sub>6</sub>|Li<sub>20/3</sub>(GeSiSb)<sub>1/3</sub>S<sub>5</sub>I|Li-In ASSBs exhibited a high capacity of 219 mAh g<sup>–1</sup> at 0.1 C, and a notable capacity of 135 mAh g<sup>–1</sup> with 84.4% retention at 1 C after 550 cycles. Our ASSBs demonstrated stable cycling across −20 to 60 °C and operated well at an ultrahigh cathode loading of 100 mg cm<sup>–2</sup>. These findings advance sulfide SSEs for high-performance and wide-temperature ASSBs.</p>","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"10 3","pages":"1374–1381 1374–1381"},"PeriodicalIF":19.3,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143608932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Achievements in Elevating the Chemistry Enterprise: Advancing Energy Transition and Smart Materials","authors":"Qiong Yuan, Wei Gao, Jingbo L. Liu","doi":"10.1021/acsenergylett.5c00349","DOIUrl":"https://doi.org/10.1021/acsenergylett.5c00349","url":null,"abstract":"The Presidential Symposium (PRES) at the Fall Meeting, hosted by the American Chemical Society (ACS) in Denver, CO, brought together a diverse group of professionals and experts from chemistry, chemical engineering, and other fields. They presented their research discoveries and convened a panel of interdisciplinary researchers to discuss innovative and practical solutions to energy sustainability challenges and the advancement of smart materials. This PRES event, organized by leaders from the Chinese American Chemical Society (CACS) under guidance from the ACS President’s Office, focused on “Achievements in Elevating the Chemistry Enterprise: Advancing Energy Transition and Smart Materials.” The symposium focused on variable-property materials and energy systems, aiming for net-zero emissions and a circular economy. Presentations and discussions highlighted leading-edge research in energy consumption, materials development, and climate change. The event promoted community building and identified new opportunities, facilitating dialogue and knowledge exchange among academia, industry, government laboratories, and nonprofits. Topics included hydrogen production, carbon capture and conversion, sustainable biofuels, natural polymers, energy storage and conversion, and entrepreneurship in energy transition. Discussions addressed tuning nanosystem dimensionality, enhancing material electrochemical properties, and advancing nanomaterial manufacturing from lab to market. Machine-learning methods for self-regulating nanomaterials and innovative applications in sustainable energy were also featured. This PRES event laid a foundation for future research directions, emphasizing collaborative efforts and strategic planning for energy sustainability and intelligent materials innovation. It provided key insights and practical solutions, promoting innovative advancements in the field. The leadership of the ACS, including Drs. Mary Carroll, Marinda Wu, and H. N. Cheng, provided comprehensive guidance to ensure the smooth operation of the PRES events (Figure 1). Their expertise and strategic direction were instrumental in addressing key challenges and facilitating successful outcomes. Their leadership was critical for the event to proceed seamlessly, promoting valuable discussions and fostering a collaborative atmosphere. Dr. Mary K. Carroll (Figure 1a), the Dwane W. Crichton Professor of Chemistry at Union College and the 2024 ACS president, provided strategic guidelines for the event. Her goals include promoting research dissemination, valuing science communication, encouraging outreach activities, and increasing ACS’s diversity. With extensive experience and dedication, Dr. Carroll aims to enhance ACS’s global impact and effectively communicate the benefits of chemistry. With over 40 years of experience in the chemical industry, Dr. Marinda Li Wu (Figure 1b) has held critical research and senior management roles. A staunch advocate for STEM education and chemi","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"16 1","pages":""},"PeriodicalIF":22.0,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143486418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ACS Energy Letters Pub Date : 2025-02-24DOI: 10.1021/acsenergylett.5c0034910.1021/acsenergylett.5c00349
Qiong Yuan, Wei Gao and Jingbo L. Liu*,
{"title":"Achievements in Elevating the Chemistry Enterprise: Advancing Energy Transition and Smart Materials","authors":"Qiong Yuan, Wei Gao and Jingbo L. Liu*, ","doi":"10.1021/acsenergylett.5c0034910.1021/acsenergylett.5c00349","DOIUrl":"https://doi.org/10.1021/acsenergylett.5c00349https://doi.org/10.1021/acsenergylett.5c00349","url":null,"abstract":"","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"10 3","pages":"1366–1373 1366–1373"},"PeriodicalIF":19.3,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143608899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ACS Energy Letters Pub Date : 2025-02-24DOI: 10.1021/acsenergylett.5c0003410.1021/acsenergylett.5c00034
Miao Zeng, Zhongliang Yan, Xinyu Ye, Yu Lou, Tao Sheng, Xianyuan Jiang, Yulin Mao, Arui Huang, Xueying Yang, Zhaojin Wang, Yuanmiao Sun, Yang Bai*, Hui-Ming Cheng* and Guichuan Xing*,
{"title":"Tailored Supramolecular Interface Enables Efficient and Stable Tin Halide Perovskite Photovoltaics","authors":"Miao Zeng, Zhongliang Yan, Xinyu Ye, Yu Lou, Tao Sheng, Xianyuan Jiang, Yulin Mao, Arui Huang, Xueying Yang, Zhaojin Wang, Yuanmiao Sun, Yang Bai*, Hui-Ming Cheng* and Guichuan Xing*, ","doi":"10.1021/acsenergylett.5c0003410.1021/acsenergylett.5c00034","DOIUrl":"https://doi.org/10.1021/acsenergylett.5c00034https://doi.org/10.1021/acsenergylett.5c00034","url":null,"abstract":"<p >The efficiency and lifetime of tin halide perovskite solar cells (THPSCs) lag far behind those of their lead counterparts, which is mainly attributed to the low-quality of tin perovskite films as a result of their poorly controlled crystallization. Here, we introduce 3D polydentate methyl-β-cyclodextrin (CD) on top of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), and such a supramolecular interlayer leads to well-regulated crystallization. The attenuate coordination between CD and ammonium at the supramolecular interface facilitates the nucleation rate, and the multisite interaction in different spatial directions retards their crystal growth, resulting in denser and defect-less tin perovskite films. Moreover, such a supramolecular interlayer not only enables better energy alignment but also weakens the acidity of PEDOT:PSS. As a result, the efficiency of THPSCs with a tailored supramolecular interface is increased to 14.94% with a new record-high <i>V</i><sub>OC</sub> of up to 1.017 V, and the unencapsulated devices exhibit an outstanding stability after nearly 4000 h of storage.</p>","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"10 3","pages":"1357–1365 1357–1365"},"PeriodicalIF":19.3,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsenergylett.5c00034","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143608887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}