Journal of Physics B: Atomic, Molecular and Optical Physics最新文献

筛选
英文 中文
Toward a Mølmer Sørensen gate with .9999 fidelity 实现保真度为 0.9999 的 Mølmer Sørensen 闸门
IF 1.6 4区 物理与天体物理
Journal of Physics B: Atomic, Molecular and Optical Physics Pub Date : 2024-09-16 DOI: 10.1088/1361-6455/ad76ef
Reinhold Blümel, Andrii Maksymov and Ming Li
{"title":"Toward a Mølmer Sørensen gate with .9999 fidelity","authors":"Reinhold Blümel, Andrii Maksymov and Ming Li","doi":"10.1088/1361-6455/ad76ef","DOIUrl":"https://doi.org/10.1088/1361-6455/ad76ef","url":null,"abstract":"Realistic fault-tolerant quantum computing at reasonable overhead requires two-qubit gates with the highest possible fidelity. Typically, an infidelity of is recommended in the literature. Focusing on the phase-sensitive architecture used in laboratories and by commercial companies to implement quantum computers, we show that even under noise-free, ideal conditions, neglecting the carrier term and linearizing the Lamb–Dicke term in the Hamiltonian used for control-pulse construction for generating Mølmer–Sørensen XX gates based on the Raman scheme are not justified if the goal is an infidelity target of . We obtain these results with a gate simulator code that, in addition to the computational space, explicitly takes the most relevant part of the phonon space into account. With the help of a Magnus expansion carried to the third order, keeping terms up to the fourth order in the Lamb–Dicke parameters, we identify the leading sources of coherent errors, which we show can be eliminated by adding a single linear equation to the phase-space closure conditions and subsequently adjusting the amplitude of the control pulse (calibration). This way, we obtain XX gates with infidelities .","PeriodicalId":16826,"journal":{"name":"Journal of Physics B: Atomic, Molecular and Optical Physics","volume":"3 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142248333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
X-ray circular dichroism measured by cross-polarization x-ray transient grating 通过交叉偏振 X 射线瞬态光栅测量 X 射线圆二色性
IF 1.6 4区 物理与天体物理
Journal of Physics B: Atomic, Molecular and Optical Physics Pub Date : 2024-09-16 DOI: 10.1088/1361-6455/ad6b62
Jérémy R Rouxel, Riccardo Mincigrucci, Danny Fainozzi and Claudio Masciovecchio
{"title":"X-ray circular dichroism measured by cross-polarization x-ray transient grating","authors":"Jérémy R Rouxel, Riccardo Mincigrucci, Danny Fainozzi and Claudio Masciovecchio","doi":"10.1088/1361-6455/ad6b62","DOIUrl":"https://doi.org/10.1088/1361-6455/ad6b62","url":null,"abstract":"Measuring natural circular dichroism in the x-ray regime to extract stereochemical information from chiral molecules in solution remains a challenge. This is primarily due to technical limitations of the existing synchrotron sources, which hinder access to measurements of local chirality by exploiting core hole electronic transitions. In response to this challenge, we propose an alternative approach: utilizing XFEL-based cross-polarization x-ray transient grating (XTG). This method provides an indirect means to measure x-ray circular dichroism (XCD). Notably, our findings reveal that the signal emerges only once the excited cores have undergone dephasing through relaxation. XTG is now routinely measured in the XUV regime and has recently been made available for hard x-rays. Free electron lasers now offer polarization controls, and XTG can be extended to various polarization states for the two pump beams, making XCD measured by XTG feasible with the current state-of-the-art technology.","PeriodicalId":16826,"journal":{"name":"Journal of Physics B: Atomic, Molecular and Optical Physics","volume":"14 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142248332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantum states and spectra of small cylindrical and toroidal lattices 小圆柱形和环形晶格的量子态和光谱
IF 1.6 4区 物理与天体物理
Journal of Physics B: Atomic, Molecular and Optical Physics Pub Date : 2024-09-15 DOI: 10.1088/1361-6455/ad7552
Caelan Brooks and Kunal K Das
{"title":"Quantum states and spectra of small cylindrical and toroidal lattices","authors":"Caelan Brooks and Kunal K Das","doi":"10.1088/1361-6455/ad7552","DOIUrl":"https://doi.org/10.1088/1361-6455/ad7552","url":null,"abstract":"We examine the spectrum and quantum states of small lattices with cylindrical and toroidal topology subject to a scalar gauge potential that introduces a position dependent phase in the inter-site coupling. Equivalency of gauges assumed in infinite lattices is generally lost due to the periodic boundary conditions, and conditions that restore it are identified. We trace the impact of various system parameters including gauge choice, boundary conditions and inter-site coupling strengths, and an additional axial field. We find gauge dependent appearance of avoided crossings and persistent degeneracies, and we show their impact on the associated eigenstates. Smaller lattices develop prominent gaps in spectral lines associated with edge states, which are suppressed in the thermodynamic limit. Toroidal lattices have counterparts of most of the features observed in cylindrical lattices, but notably they display a transition from localization to delocalization determined by the relation between the field parameter and the number of lattice sites.","PeriodicalId":16826,"journal":{"name":"Journal of Physics B: Atomic, Molecular and Optical Physics","volume":"13 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142248334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Addendum: Multichannel quantum defect theory of strontium bound Rydberg states (2014 J. Phys. B: At. Mol. Opt. Phys. 47 155001) 增编:锶结合雷德贝格态的多通道量子缺陷理论(2014 J. Phys. B: At. Mol. Opt. Phys. 47 155001)
IF 1.6 4区 物理与天体物理
Journal of Physics B: Atomic, Molecular and Optical Physics Pub Date : 2024-09-10 DOI: 10.1088/1361-6455/ad76f0
C L Vaillant, M P A Jones and R M Potvliege
{"title":"Addendum: Multichannel quantum defect theory of strontium bound Rydberg states (2014 J. Phys. B: At. Mol. Opt. Phys. 47 155001)","authors":"C L Vaillant, M P A Jones and R M Potvliege","doi":"10.1088/1361-6455/ad76f0","DOIUrl":"https://doi.org/10.1088/1361-6455/ad76f0","url":null,"abstract":"Newly calculated multichannel quantum defect theory parameters and channel fractions are presented for the singlet and triplet S, P and D series and singlet F series of strontium. These results correct those reported in Vaillant et al (2014 J. Phys. B: At. Mol. Opt. Phys.47 155001).","PeriodicalId":16826,"journal":{"name":"Journal of Physics B: Atomic, Molecular and Optical Physics","volume":"3 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142190907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Laser-assisted radiative recombination in a cold hydrogen plasma 冷氢等离子体中的激光辅助辐射重组
IF 1.6 4区 物理与天体物理
Journal of Physics B: Atomic, Molecular and Optical Physics Pub Date : 2024-09-09 DOI: 10.1088/1361-6455/ad75f6
I I Fabrikant and H B Ambalampitiya
{"title":"Laser-assisted radiative recombination in a cold hydrogen plasma","authors":"I I Fabrikant and H B Ambalampitiya","doi":"10.1088/1361-6455/ad75f6","DOIUrl":"https://doi.org/10.1088/1361-6455/ad75f6","url":null,"abstract":"We study the process of laser-assisted radiative recombination of an electron with a proton in a cold hydrogen plasma employing the semiclassical Kramers’ approach which involves calculation of classical trajectories in combined laser and Coulomb fields and the use of the correspondence principle. Due to the Coulomb focusing effect, recombination is the most effective when the initial electron momentum is parallel to the laser polarization. Orders of magnitude enhancement of the cross section, as compared to the laser-free case, is observed in this case. With increasing angle between the electron momentum and polarization, the recombination cross section drops. However, even after averaging over Maxwellian velocity distribution we obtain a substantial enhancement of the recombination rate constant, as compared to the zero-field case. For the field intensities in the range 30–350 MW cm−2, the enhancement occurs in the region of the radiation wavelength from 5 to 20 µm and for the plasma temperature from 20 to 300 K.","PeriodicalId":16826,"journal":{"name":"Journal of Physics B: Atomic, Molecular and Optical Physics","volume":"34-35 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142190910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Absolute nuclear charge radius by Na-like spectral line separation in high-Z elements 高 Z 元素中通过类 Na 光谱线分离得出的绝对核电荷半径
IF 1.6 4区 物理与天体物理
Journal of Physics B: Atomic, Molecular and Optical Physics Pub Date : 2024-09-09 DOI: 10.1088/1361-6455/ad717b
A Hosier, 0000-0001-6675-8509Dipti3, S A Blundell, R Silwal, A Lapierre, J D Gillaspy, G Gwinner, J N Tan, A A Kwiatkowski, Y Wang, H Staiger, A C C Villari, Yu Ralchenko, E Takacs
{"title":"Absolute nuclear charge radius by Na-like spectral line separation in high-Z elements","authors":"A Hosier, 0000-0001-6675-8509Dipti3, S A Blundell, R Silwal, A Lapierre, J D Gillaspy, G Gwinner, J N Tan, A A Kwiatkowski, Y Wang, H Staiger, A C C Villari, Yu Ralchenko, E Takacs","doi":"10.1088/1361-6455/ad717b","DOIUrl":"https://doi.org/10.1088/1361-6455/ad717b","url":null,"abstract":"We describe a novel technique to determine absolute nuclear radii of high-<italic toggle=\"yes\">Z</italic> nuclides. Utilizing accurate theoretical atomic structure calculations together with precise measurements of extreme ultraviolet transitions in highly charged ions this method allows for precise determinations of absolute nuclear charge radii based upon the well-known nuclear radii of their neighboring elements. This method can work for elements without stable isotopes, and its accuracy may be competitive with current methods (electron scattering and muonic x-ray spectroscopy).","PeriodicalId":16826,"journal":{"name":"Journal of Physics B: Atomic, Molecular and Optical Physics","volume":"26 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142190906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Perspective for in-volume machining of solid materials by undersurface focusing of x-ray pulses 通过表面下聚焦 X 射线脉冲对固体材料进行体积内加工的展望
IF 1.6 4区 物理与天体物理
Journal of Physics B: Atomic, Molecular and Optical Physics Pub Date : 2024-09-06 DOI: 10.1088/1361-6455/ad7551
Ichiro Inoue, Beata Ziaja
{"title":"Perspective for in-volume machining of solid materials by undersurface focusing of x-ray pulses","authors":"Ichiro Inoue, Beata Ziaja","doi":"10.1088/1361-6455/ad7551","DOIUrl":"https://doi.org/10.1088/1361-6455/ad7551","url":null,"abstract":"In this perspective article we propose and discuss a possible technique of in-depth material processing based on undersurface focusing of intense x-ray pulses. Currently, x-ray free-electron lasers can produce such intense x-ray pulses with femtosecond pulse durations, reaching intensities sufficiently high to cause ultrafast melting of a material after a single laser shot. Here, on the example of silicon crystal we will demonstrate that with a proper choice of pulse parameters and focusing parameters, the already existing nanofocusing setup has a capability to focus hard x rays down to several hundreds micrometers below the material surface. This can trigger the required structural modification in the focal point, without damaging the material above. Potential applications of the new technique are discussed.","PeriodicalId":16826,"journal":{"name":"Journal of Physics B: Atomic, Molecular and Optical Physics","volume":"2 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142190794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tracking dissociation pathways of nitrobenzene via mega-electron-volt ultrafast electron diffraction 通过兆电子伏特超快电子衍射跟踪硝基苯的解离路径
IF 1.6 4区 物理与天体物理
Journal of Physics B: Atomic, Molecular and Optical Physics Pub Date : 2024-09-06 DOI: 10.1088/1361-6455/ad7431
Kareem Hegazy, Phil Bucksbaum, Martin Centurion, James Cryan, Renkai Li, Ming-Fu Lin, Bryan Moore, Pedro Nunes, Xiaozhe Shen, Stephen Weathersby, Jie Yang, Xijie Wang, Thomas Wolf
{"title":"Tracking dissociation pathways of nitrobenzene via mega-electron-volt ultrafast electron diffraction","authors":"Kareem Hegazy, Phil Bucksbaum, Martin Centurion, James Cryan, Renkai Li, Ming-Fu Lin, Bryan Moore, Pedro Nunes, Xiaozhe Shen, Stephen Weathersby, Jie Yang, Xijie Wang, Thomas Wolf","doi":"10.1088/1361-6455/ad7431","DOIUrl":"https://doi.org/10.1088/1361-6455/ad7431","url":null,"abstract":"As the simplest nitroaromatic compound, nitrobenzene is an interesting model system to explore the rich photochemistry of nitroaromatic compounds. Previous investigations of nitrobenzene’s photochemical dynamics have probed structural and electronic properties. These investigations paint, at times, a convoluted and sometimes contradictory description of the photochemical landscape. We investigate the ultrafast dynamics of nitrobenzene triggered by photoexcitation at 267 nm for the first time using a structural probe with femtosecond time resolution. Our probe complements previous measurements of nitrobenzene’s electronic structure evolution and aids in determining the photochemical dynamics with less ambiguity. We employ megaelectronvolt ultrafast electron diffraction to follow nitrobenzene’s structural evolution within the first 5 ps after photoexcitation. We observe ground state recovery within <inline-formula>\u0000<tex-math><?CDATA $160 pm 60$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mn>160</mml:mn><mml:mo>±</mml:mo><mml:mn>60</mml:mn></mml:mrow></mml:math><inline-graphic xlink:href=\"bad7431ieqn1.gif\"></inline-graphic></inline-formula> fs through nonadiabatic dynamics. Based on comparisons of the experimental signal with molecular dynamics simulations, we exclude a significant population of the triplet manifold. Furthermore, we do not observe fragmentation of nitrobenzene within the investigated time window, which indicates that previously observed photofragmentation reactions take place in the vibrationally ‘hot’ ground state on timescales considerably beyond 5 ps.","PeriodicalId":16826,"journal":{"name":"Journal of Physics B: Atomic, Molecular and Optical Physics","volume":"161 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142190914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Atom number fluctuations in Bose gases—statistical analysis of parameter estimation 玻色气体中的原子数波动--参数估计的统计分析
IF 1.6 4区 物理与天体物理
Journal of Physics B: Atomic, Molecular and Optical Physics Pub Date : 2024-09-06 DOI: 10.1088/1361-6455/ad7458
T Vibel, M B Christensen, R M F Andersen, L N Stokholm, K Pawłowski, K Rzążewski, M A Kristensen, J J Arlt
{"title":"Atom number fluctuations in Bose gases—statistical analysis of parameter estimation","authors":"T Vibel, M B Christensen, R M F Andersen, L N Stokholm, K Pawłowski, K Rzążewski, M A Kristensen, J J Arlt","doi":"10.1088/1361-6455/ad7458","DOIUrl":"https://doi.org/10.1088/1361-6455/ad7458","url":null,"abstract":"The investigation of atom number fluctuations in quantum gases at finite temperatures showcases the ongoing challenges in understanding complex quantum systems. Recently, the microcanonical nature of atom number fluctuations in weakly interacting Bose–Einstein condensates was observed. This motivates an investigation of the thermal component of partially condensed Bose gases, due to the conservation of the total atom number. Here, we present a combined analysis of both components, including a comprehensive analysis of the uncertainties in the preparation and parameter extraction of partially condensed quantum gases. This enables a complementary observation of the thermal atom number fluctuations and yields and improved value of the peak BEC atom number fluctuations <inline-formula>\u0000<tex-math><?CDATA $Delta N_mathrm{p,0}^2 = (3.7pm7)times10^5$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mi mathvariant=\"normal\">Δ</mml:mi><mml:msubsup><mml:mi>N</mml:mi><mml:mrow><mml:mi mathvariant=\"normal\">p</mml:mi><mml:mo>,</mml:mo><mml:mn>0</mml:mn></mml:mrow><mml:mn>2</mml:mn></mml:msubsup><mml:mo>=</mml:mo><mml:mo stretchy=\"false\">(</mml:mo><mml:mn>3.7</mml:mn><mml:mo>±</mml:mo><mml:mn>7</mml:mn><mml:mo stretchy=\"false\">)</mml:mo><mml:mo>×</mml:mo><mml:msup><mml:mn>10</mml:mn><mml:mn>5</mml:mn></mml:msup></mml:mrow></mml:math><inline-graphic xlink:href=\"bad7458ieqn1.gif\"></inline-graphic></inline-formula> close to the critical temperature. This corresponds to a reduction by 41% with respect to previous analysis and corroborates the microcanonical nature of the fluctuations. The analysis of noise contributions due to the preparation and evaluation of partially condensed Bose gases is based on Monte Carlo simulations of optical density profiles. Importantly, this allows for an estimation of the technical noise contributions to the atom number and temperature, which is generally applicable in the field of ultracold atoms.","PeriodicalId":16826,"journal":{"name":"Journal of Physics B: Atomic, Molecular and Optical Physics","volume":"68 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142190909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anisotropy-driven magnetic phase transitions in SU(4)-symmetric Fermi gas in three-dimensional optical lattices 三维光晶格中 SU(4)- 对称费米气体中各向异性驱动的磁相变
IF 1.6 4区 物理与天体物理
Journal of Physics B: Atomic, Molecular and Optical Physics Pub Date : 2024-08-30 DOI: 10.1088/1361-6455/ad6b63
Vladyslav Unukovych, Andrii Sotnikov
{"title":"Anisotropy-driven magnetic phase transitions in SU(4)-symmetric Fermi gas in three-dimensional optical lattices","authors":"Vladyslav Unukovych, Andrii Sotnikov","doi":"10.1088/1361-6455/ad6b63","DOIUrl":"https://doi.org/10.1088/1361-6455/ad6b63","url":null,"abstract":"We study an SU(4)-symmetric ultracold fermionic mixture in a cubic optical lattice with a variable tunneling amplitude along one particular crystallographic axis in the crossover region from the two- to three-dimensional spatial geometry. To theoretically analyze the emerging magnetic phases and physical observables, we describe the system within the framework of the Fermi–Hubbard model and apply dynamical mean-field theory. We show that in two limiting cases of anisotropy, there are two phases with different antiferromagnetic orderings in the zero temperature limit and we determine a region of their coexistence. We also study the stability regions of different magnetically ordered states and density profiles of the gas in the harmonic optical trap.","PeriodicalId":16826,"journal":{"name":"Journal of Physics B: Atomic, Molecular and Optical Physics","volume":"38 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142190788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信