{"title":"通过表面下聚焦 X 射线脉冲对固体材料进行体积内加工的展望","authors":"Ichiro Inoue, Beata Ziaja","doi":"10.1088/1361-6455/ad7551","DOIUrl":null,"url":null,"abstract":"In this perspective article we propose and discuss a possible technique of in-depth material processing based on undersurface focusing of intense x-ray pulses. Currently, x-ray free-electron lasers can produce such intense x-ray pulses with femtosecond pulse durations, reaching intensities sufficiently high to cause ultrafast melting of a material after a single laser shot. Here, on the example of silicon crystal we will demonstrate that with a proper choice of pulse parameters and focusing parameters, the already existing nanofocusing setup has a capability to focus hard x rays down to several hundreds micrometers below the material surface. This can trigger the required structural modification in the focal point, without damaging the material above. Potential applications of the new technique are discussed.","PeriodicalId":16826,"journal":{"name":"Journal of Physics B: Atomic, Molecular and Optical Physics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Perspective for in-volume machining of solid materials by undersurface focusing of x-ray pulses\",\"authors\":\"Ichiro Inoue, Beata Ziaja\",\"doi\":\"10.1088/1361-6455/ad7551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this perspective article we propose and discuss a possible technique of in-depth material processing based on undersurface focusing of intense x-ray pulses. Currently, x-ray free-electron lasers can produce such intense x-ray pulses with femtosecond pulse durations, reaching intensities sufficiently high to cause ultrafast melting of a material after a single laser shot. Here, on the example of silicon crystal we will demonstrate that with a proper choice of pulse parameters and focusing parameters, the already existing nanofocusing setup has a capability to focus hard x rays down to several hundreds micrometers below the material surface. This can trigger the required structural modification in the focal point, without damaging the material above. Potential applications of the new technique are discussed.\",\"PeriodicalId\":16826,\"journal\":{\"name\":\"Journal of Physics B: Atomic, Molecular and Optical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics B: Atomic, Molecular and Optical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6455/ad7551\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics B: Atomic, Molecular and Optical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6455/ad7551","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
摘要
在这篇展望文章中,我们提出并讨论了一种基于强 X 射线脉冲表面下聚焦的材料深度加工技术。目前,X 射线自由电子激光器可以产生飞秒脉冲持续时间的强 X 射线脉冲,其强度足以在一次激光发射后导致材料超快熔化。在这里,我们将以硅晶体为例,证明只要正确选择脉冲参数和聚焦参数,现有的纳米聚焦装置就有能力将硬 X 射线聚焦到材料表面以下数百微米处。这样就能在焦点处引发所需的结构改变,而不会损坏上面的材料。本文讨论了这项新技术的潜在应用。
Perspective for in-volume machining of solid materials by undersurface focusing of x-ray pulses
In this perspective article we propose and discuss a possible technique of in-depth material processing based on undersurface focusing of intense x-ray pulses. Currently, x-ray free-electron lasers can produce such intense x-ray pulses with femtosecond pulse durations, reaching intensities sufficiently high to cause ultrafast melting of a material after a single laser shot. Here, on the example of silicon crystal we will demonstrate that with a proper choice of pulse parameters and focusing parameters, the already existing nanofocusing setup has a capability to focus hard x rays down to several hundreds micrometers below the material surface. This can trigger the required structural modification in the focal point, without damaging the material above. Potential applications of the new technique are discussed.
期刊介绍:
Published twice-monthly (24 issues per year), Journal of Physics B: Atomic, Molecular and Optical Physics covers the study of atoms, ions, molecules and clusters, and their structure and interactions with particles, photons or fields. The journal also publishes articles dealing with those aspects of spectroscopy, quantum optics and non-linear optics, laser physics, astrophysics, plasma physics, chemical physics, optical cooling and trapping and other investigations where the objects of study are the elementary atomic, ionic or molecular properties of processes.