Journal of Pharmacology and Experimental Therapeutics最新文献

筛选
英文 中文
The National Center for Complementary and Integrative Health: Priorities for Cannabis and Cannabinoid Research. 国家补充和综合保健中心(NCCIH)大麻和大麻素研究的优先事项。
IF 3.1 3区 医学
Journal of Pharmacology and Experimental Therapeutics Pub Date : 2024-10-18 DOI: 10.1124/jpet.124.002173
David Shurtleff, Angela Arensdorf, Patrick C Still, Steven W Gust, Sekai Chideya, David Craig Hopp, Inna Belfer
{"title":"The National Center for Complementary and Integrative Health: Priorities for Cannabis and Cannabinoid Research.","authors":"David Shurtleff, Angela Arensdorf, Patrick C Still, Steven W Gust, Sekai Chideya, David Craig Hopp, Inna Belfer","doi":"10.1124/jpet.124.002173","DOIUrl":"10.1124/jpet.124.002173","url":null,"abstract":"<p><p>The National Center for Complementary and Integrative Health (NCCIH), which is part of the US National Institutes of Health (NIH), has a broad interest in studying the biologic activities of natural products, especially those for which compelling evidence from preclinical research suggests biologic activities that may be beneficial to health or have a potential role in disease treatment, as well as products used extensively by the American public. As of 2023, use of cannabis for medical purposes is legal in 38 states and Washington, D.C. Such use continues to climb generally without sufficient knowledge regarding risks and benefits. In keeping with NCCIH's natural product research priorities and recognizing this gap in knowledge, NCCIH formally launched a research program in 2019 to expand research on the possible benefits for pain management of certain substances found in cannabis: minor cannabinoids and terpenes. This Viewpoint provides additional details and the rationale for this research priority at NCCIH. In addition, NCCIH's efforts and initiatives to facilitate and coordinate an NIH research agenda focused on cannabis and cannabinoid research are described. SIGNIFICANCE STATEMENT: Use of cannabis for purported medical purposes continues to increase despite insufficient knowledge regarding risks and benefits. Research is needed to help health professionals and patients make knowledgeable decisions about using cannabis and cannabinoids for medical purposes. The National Center for Complementary and Integrative Health, along with other NIH Institutes, Centers, and Offices, is expanding study on the safety, efficacy, and harms of cannabis-a complex mixture of phytochemicals that needs to be studied alone and in combination.</p>","PeriodicalId":16798,"journal":{"name":"Journal of Pharmacology and Experimental Therapeutics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11493444/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141283909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Δ9-Tetrahydrocannabinol Alleviates Hyperalgesia in a Humanized Mouse Model of Sickle Cell Disease. Δ 9 -四氢大麻酚可减轻镰状细胞病人性化小鼠模型的痛觉过度。
IF 3.1 3区 医学
Journal of Pharmacology and Experimental Therapeutics Pub Date : 2024-10-18 DOI: 10.1124/jpet.124.002285
Alex Mabou Tagne, Yannick Fotio, Kalpna Gupta, Daniele Piomelli
{"title":"Δ<sup>9</sup>-Tetrahydrocannabinol Alleviates Hyperalgesia in a Humanized Mouse Model of Sickle Cell Disease.","authors":"Alex Mabou Tagne, Yannick Fotio, Kalpna Gupta, Daniele Piomelli","doi":"10.1124/jpet.124.002285","DOIUrl":"10.1124/jpet.124.002285","url":null,"abstract":"<p><p>People with sickle cell disease (SCD) often experience chronic pain as well as unpredictable episodes of acute pain, which significantly affects their quality of life and life expectancy. Current treatment strategies for SCD-associated pain primarily rely on opioid analgesics, which have limited efficacy and cause serious adverse effects. Cannabis has emerged as a potential alternative, yet its efficacy remains uncertain. In this study, we investigated the antinociceptive effects of Δ<sup>9</sup>-tetrahydrocannabinol (THC), cannabis' intoxicating constituent, in male HbSS mice, which express >99% human sickle hemoglobin, and male HbAA mice, which express normal human hemoglobin A, as a control. Acute THC administration (0.1-3 mg/kg<sup>-1</sup>, i.p.) dose-dependently reduced mechanical and cold hypersensitivity in human sickle hemoglobin (HbSS) but not human normal hemoglobin A (HbAA) mice. In the tail-flick assay, THC (1 and 3 mg/kg<sup>-1</sup>, i.p.) produced substantial antinociceptive effects in HbSS mice. By contrast, THC (1 mg/kg<sup>-1</sup>, i.p.) did not alter anxiety-like behavior (elevated plus maze) or long-term memory (24-hour novel object recognition). Subchronic THC treatment (1 and 3 mg/kg<sup>-1</sup>, i.p.) provided sustained relief of mechanical hypersensitivity but led to tolerance in cold hypersensitivity in HbSS mice. Together, the findings identify THC as a possible therapeutic option for the management of chronic pain in SCD. Further research is warranted to elucidate its mechanism of action and possible interaction with other cannabis constituents. SIGNIFICANCE STATEMENT: The study explores Δ<sup>9</sup>-tetrahydrocannabinol (THC)'s efficacy in alleviating pain in sickle cell disease (SCD) using a humanized mouse model. Findings indicate that acute THC administration reduces mechanical and cold hypersensitivity in SCD mice without impacting emotional and cognitive dysfunction. Subchronic THC treatment offers sustained relief of mechanical hypersensitivity but leads to cold hypersensitivity tolerance. These results offer insights into THC's potential as an alternative pain management option in SCD, highlighting both its benefits and limitations.</p>","PeriodicalId":16798,"journal":{"name":"Journal of Pharmacology and Experimental Therapeutics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141492390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluating the Abuse Potential of Lenabasum, a Selective Cannabinoid Receptor 2 Agonist. 评估选择性 CB2 大麻受体激动剂 Lenabasum 的滥用潜力。
IF 3.1 3区 医学
Journal of Pharmacology and Experimental Therapeutics Pub Date : 2024-10-18 DOI: 10.1124/jpet.124.002129
Rachel Luba, Gabriela Madera, Rebecca Schusterman, Andrew Kolodziej, Ian Hodgson, Sandra D Comer
{"title":"Evaluating the Abuse Potential of Lenabasum, a Selective Cannabinoid Receptor 2 Agonist.","authors":"Rachel Luba, Gabriela Madera, Rebecca Schusterman, Andrew Kolodziej, Ian Hodgson, Sandra D Comer","doi":"10.1124/jpet.124.002129","DOIUrl":"10.1124/jpet.124.002129","url":null,"abstract":"<p><p>Endocannabinoids, which are present throughout the central nervous system (CNS), can activate cannabinoid receptors 1 and 2 (CB1 and CB2). CB1 and CB2 agonists exhibit broad anti-inflammatory properties, suggesting their potential to treat inflammatory diseases. However, careful evaluation of abuse potential is necessary. This study evaluated the abuse potential of lenabasum, a selective CB2 receptor agonist in participants (<i>n</i> = 56) endorsing recreational cannabis use. Three doses of lenabasum (20, 60, and 120 mg) were compared with placebo and nabilone (3 and 6 mg). The primary endpoint was the peak effect (E<sub>max</sub>) on a bipolar Drug Liking visual analog scale (VAS). Secondary VAS and pharmacokinetic (PK) endpoints and adverse events were assessed. Lenabasum was safe and well tolerated. Compared with placebo, a 20-mg dose of lenabasum did not increase ratings of Drug Liking and had no distinguishable effect on other VAS endpoints. Dose-dependent increases in ratings of Drug Liking were observed with 60 and 120 mg lenabasum. Drug Liking and all other VAS outcomes were greatest for nabilone 3 mg and 6 mg, a medication currently approved by the US Food and Drug Administration (FDA). At a target therapeutic dose (20 mg), lenabasum did not elicit subjective ratings of Drug Liking. However, supratherapeutic doses of lenabasum (60 and 120 mg) did elicit subjective ratings of Drug Liking compared with placebo. Although both doses of lenabasum were associated with lower ratings of Drug Liking compared with 3 mg and 6 mg nabilone, lenabasum does have abuse potential and should be used cautiously in clinical settings. SIGNIFICANCE STATEMENT: This work provides evidence that in people with a history of recreational cannabis use, lenabasum was safe and well tolerated, although it did demonstrate abuse potential. This work supports further development of lenabasum for potential therapeutic indications.</p>","PeriodicalId":16798,"journal":{"name":"Journal of Pharmacology and Experimental Therapeutics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11493446/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141468836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cannabis and Cannabinoid Signaling: Research Gaps and Opportunities. 大麻和大麻素信号:研究空白与机遇。
IF 3.1 3区 医学
Journal of Pharmacology and Experimental Therapeutics Pub Date : 2024-10-18 DOI: 10.1124/jpet.124.002331
Rita J Valentino, Nora D Volkow
{"title":"Cannabis and Cannabinoid Signaling: Research Gaps and Opportunities.","authors":"Rita J Valentino, Nora D Volkow","doi":"10.1124/jpet.124.002331","DOIUrl":"10.1124/jpet.124.002331","url":null,"abstract":"<p><p>Cannabis and its products have been used for centuries for both medicinal and recreational purposes. The recent widespread legalization of cannabis has vastly expanded its use in the United States across all demographics except for adolescents. Meanwhile, decades of research have advanced our knowledge of cannabis pharmacology and particularly of the endocannabinoid system with which the components of cannabis interact. This research has revealed multiple targets and approaches for manipulating the system for therapeutic use and to ameliorate cannabis toxicity or cannabis use disorder. Research has also led to new questions that underscore the potential risks of its widespread use, particularly the enduring consequences of exposure during critical windows of brain development or for consumption of large daily doses of cannabis with high content <i>Δ</i> <sup>9</sup>-tetrahydrocannabinol. This article highlights current neuroscience research on cannabis that has shed light on therapeutic opportunities and potential adverse consequences of misuse and points to gaps in knowledge that can guide future research. SIGNIFICANCE STATEMENT: Cannabis use has escalated with its increased availability. Here, the authors highlight the challenges of cannabis research and the gaps in our knowledge of cannabis pharmacology and of the endocannabinoid system that it targets. Future research that addresses these gaps is needed so that the endocannabinoid system can be leveraged for safe and effective use.</p>","PeriodicalId":16798,"journal":{"name":"Journal of Pharmacology and Experimental Therapeutics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11493439/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141766368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Dawning of a New Age of Preclinical Analgesic Drug Screening. 临床前镇痛药物筛选新时代的来临。
IF 3.1 3区 医学
Journal of Pharmacology and Experimental Therapeutics Pub Date : 2024-10-18 DOI: 10.1124/jpet.124.002274
Michael M Morgan
{"title":"The Dawning of a New Age of Preclinical Analgesic Drug Screening.","authors":"Michael M Morgan","doi":"10.1124/jpet.124.002274","DOIUrl":"https://doi.org/10.1124/jpet.124.002274","url":null,"abstract":"","PeriodicalId":16798,"journal":{"name":"Journal of Pharmacology and Experimental Therapeutics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142468329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chronic Administration of Cannabinoid Agonists ACEA, AM1241, and CP55,940 Induce Sex-Specific Differences in Tolerance and Sex Hormone Changes in a Chemotherapy-Induced Peripheral Neuropathy. 长期服用大麻素激动剂 ACEA(CB1)、AM1241(CB2)和 CP55,940 (CB1/CB2 混合)可在化疗引起的周围神经病变中诱导耐受性和性激素变化的性别差异。
IF 3.1 3区 医学
Journal of Pharmacology and Experimental Therapeutics Pub Date : 2024-10-18 DOI: 10.1124/jpet.124.002165
Robert C Barnes, Henry Blanton, Canice Lei Dancel, Isabel Castro-Piedras, Boyd R Rorabaugh, Daniel J Morgan, Josée Guindon
{"title":"Chronic Administration of Cannabinoid Agonists ACEA, AM1241, and CP55,940 Induce Sex-Specific Differences in Tolerance and Sex Hormone Changes in a Chemotherapy-Induced Peripheral Neuropathy.","authors":"Robert C Barnes, Henry Blanton, Canice Lei Dancel, Isabel Castro-Piedras, Boyd R Rorabaugh, Daniel J Morgan, Josée Guindon","doi":"10.1124/jpet.124.002165","DOIUrl":"10.1124/jpet.124.002165","url":null,"abstract":"<p><p>Chemotherapy-induced peripheral neuropathy (CIPN) is a common side effect of chemotherapy treatment, routinely manifesting as increased pain sensitivity (allodynia) in distal extremities. Despite its prevalence, effective treatment options are limited. Cannabinoids are increasingly being evaluated for their ability to treat chronic pain conditions, including CIPN. While previous studies have revealed sex differences in cannabinoid-mediated antinociception in acute and chronic pain models, there is a paucity of studies addressing potential sex differences in the response of CIPN to cannabinoid treatment. Therefore, we evaluated the long-term antiallodynic efficacy of cannabinoid receptor type 1 (CB<sub>1</sub>)-selective, cannabinoid receptor type 2 (CB<sub>2</sub>)-selective, and CB<sub>1</sub>/CB<sub>2</sub> mixed agonists in the cisplatin CIPN model, using both male and female mice. CB<sub>1</sub> selective agonism was observed to have sex differences in the development of tolerance to antiallodynic effects, with females developing tolerance more rapidly than males, while the antiallodynic effects of selective CB<sub>2</sub> agonism lacked tolerance development. Compound-specific changes to the female estrous cycle and female plasma estradiol levels were noted, with CB<sub>1</sub> selective agonism decreasing plasma estradiol while CB<sub>2</sub> selective agonism increased plasma estradiol. Chronic administration of a mixed CB<sub>1</sub>/CB<sub>2</sub> agonist resulted in increased mRNA expression of proinflammatory cytokines and endocannabinoid regulatory enzymes in female spinal cord tissue. Ovarian tissue was noted to have proinflammatory cytokine mRNA expression following administration of a CB<sub>2</sub> acting compound while selective CB<sub>1</sub> agonism resulted in decreased proinflammatory cytokines and endocannabinoid regulatory enzymes in testes. These results support the need for further investigation into the role of sex and sex hormones signaling in pain and cannabinoid-mediated antinociceptive effects. SIGNIFICANCE STATEMENT: CIPN is a common side effect of chemotherapy. We have found that both CB<sub>1</sub> and CB<sub>2</sub> receptor agonism produce antinociceptive effects in a cisplatin CIPN model. We observed that tolerance to CB<sub>1</sub>-mediated antinociception developed faster in females and did not develop for CB<sub>2</sub>-mediated antinociception. Additionally, we found contrasting roles for CB<sub>1</sub>/CB<sub>2</sub> receptors in the regulation of plasma estradiol in females, with CB<sub>1</sub> agonism attenuating estradiol and CB<sub>2</sub> agonism enhancing estradiol. These findings support the exploration of cannabinoid agonists for CIPN.</p>","PeriodicalId":16798,"journal":{"name":"Journal of Pharmacology and Experimental Therapeutics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11493449/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141468839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gabapentinoids Increase the Potency of Fentanyl and Heroin and Decrease the Potency of Naloxone to Antagonize Fentanyl and Heroin in Rats Discriminating Fentanyl. 在辨别芬太尼的大鼠身上,加巴喷丁类药物会增加芬太尼和海洛因的效力,并降低纳洛酮拮抗芬太尼和海洛因的效力。
IF 3.1 3区 医学
Journal of Pharmacology and Experimental Therapeutics Pub Date : 2024-10-18 DOI: 10.1124/jpet.124.002323
Takato Hiranita, Shawn M Flynn, Amanda K Grisham, Abram E Mijares, Erin N Murphy, Charles P France
{"title":"Gabapentinoids Increase the Potency of Fentanyl and Heroin and Decrease the Potency of Naloxone to Antagonize Fentanyl and Heroin in Rats Discriminating Fentanyl.","authors":"Takato Hiranita, Shawn M Flynn, Amanda K Grisham, Abram E Mijares, Erin N Murphy, Charles P France","doi":"10.1124/jpet.124.002323","DOIUrl":"10.1124/jpet.124.002323","url":null,"abstract":"<p><p>Despite a significant decrease in the number of prescriptions for opioids, the opioid crisis continues, fueled in large part by the availability of the phenylpiperidine <i>mu</i> opioid receptor (MOR) agonist fentanyl. In contrast, the number of prescriptions for and the off-label use of gabapentinoids (gabapentin and pregabalin) has increased dramatically, with gabapentinoids commonly detected in opioid overdose victims. Although gabapentinoids can decrease the potency of the opioid receptor antagonist naloxone to reverse heroin-induced hypoventilation in male rats, the specificity and nature of interaction between gabapentinoids and MOR agonists and any potential sex difference in those interactions are not well characterized. Gabapentinoids were studied in female and male rats discriminating fentanyl (0.0032 mg/kg, i.p.) or cocaine (3.2 mg/kg, i.p.). Alone, neither gabapentin nor pregabalin significantly increased fentanyl- or cocaine-appropriate responding. In rats discriminating fentanyl, each gabapentinoid dose-dependently shifted the fentanyl and heroin discrimination dose-effect functions to the left, whereas naloxone dose-dependently shifted the fentanyl and heroin discrimination dose-effect functions to the right. Each gabapentinoid (100 mg/kg) significantly decreased the potency of naloxone to antagonize the discriminative stimulus effect of fentanyl or heroin. In contrast, each gabapentinoid dose-dependently shifted the cocaine and <i>d</i>-methamphetamine discrimination dose-effect functions to the right. There were no significant sex differences in this study. These results suggest that gabapentinoids impact the misuse of opioids, the co-use of opioids and stimulant drugs, and the increasing number of overdose deaths in individuals using opioids, stimulant drugs, and gabapentinoids in mixtures. SIGNIFICANCE STATEMENT: The number of prescriptions for and the off-label use of gabapentinoids (gabapentin and pregabalin) has increased dramatically, with gabapentinoids commonly detected in opioid overdose victims. This study reports that in rats gabapentinoids increase the potency of fentanyl and heroin to produce discriminative stimulus effects while decreasing the potency of naloxone to antagonize those effects of fentanyl and heroin. These results can help guide policies for regulating gabapentinoids and treating opioid misuse and overdose.</p>","PeriodicalId":16798,"journal":{"name":"Journal of Pharmacology and Experimental Therapeutics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11493450/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142046845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Select Minor Cannabinoids from Cannabis sativa Are Cannabimimetic and Antinociceptive in a Mouse Model of Chronic Neuropathic Pain. 在慢性神经性疼痛小鼠模型中,大麻中精选的少量大麻素具有大麻拟效和抗痛觉作用。
IF 3.1 3区 医学
Journal of Pharmacology and Experimental Therapeutics Pub Date : 2024-10-18 DOI: 10.1124/jpet.124.002212
Abigail M Schwarz, Dea Kobeci, Joseph A Mancuso, Valeria Moreno-Rodríguez, Caleb Seekins, Thai Bui, Alyssa Welborn, Jerry Carr, John M Streicher
{"title":"Select Minor Cannabinoids from <i>Cannabis sativa</i> Are Cannabimimetic and Antinociceptive in a Mouse Model of Chronic Neuropathic Pain.","authors":"Abigail M Schwarz, Dea Kobeci, Joseph A Mancuso, Valeria Moreno-Rodríguez, Caleb Seekins, Thai Bui, Alyssa Welborn, Jerry Carr, John M Streicher","doi":"10.1124/jpet.124.002212","DOIUrl":"10.1124/jpet.124.002212","url":null,"abstract":"<p><p>Chronic pain conditions affect nearly 20% of the population in the United States. Current medical interventions, such as opioid drugs, are effective at relieving pain but are accompanied by many undesirable side effects. This is one reason increased numbers of chronic pain patients have been turning to <i>Cannabis</i> for pain management. <i>Cannabis</i> contains many bioactive chemical compounds; however, current research looking into lesser-studied minor cannabinoids in <i>Cannabis</i> lacks uniformity between experimental groups and/or excludes female mice from investigation. This makes it challenging to draw conclusions between experiments done with different minor cannabinoid compounds between laboratories or parse out potential sex differences that could be present. We chose five minor cannabinoids found in lower quantities within <i>Cannabis</i>: cannabinol (CBN), cannabidivarin (CBDV), cannabigerol (CBG), Δ8-tetrahydrocannabinol (Δ8-THC), and Δ9-tetrahydrocannabivarin (THCV). These compounds were then tested for their cannabimimetic and pain-relieving behaviors in a cannabinoid tetrad assay and a chemotherapy-induced peripheral neuropathy (CIPN) pain model in male and female CD-1 mice. We found that the minor cannabinoids we tested differed in the cannabimimetic behaviors evoked, as well as the extent. We found that CBN, CBG, and high-dose Δ8-THC evoked some tetrad behaviors in both sexes, while THCV and low-dose Δ8-THC exhibited cannabimimetic tetrad behaviors only in females. Only CBN efficaciously relieved CIPN pain, which contrasts with reports from other researchers. Together these findings provide further clarity to the pharmacology of minor cannabinoids and suggest further investigation into their mechanism and therapeutic potential. SIGNIFICANCE STATEMENT: Minor cannabinoids are poorly studied ligands present in lower levels in <i>Cannabis</i> than cannabinoids like THC. In this study, we evaluated five minor cannabinoids (CBN, CBDV, CBG, THCV, and Δ8-THC) for their cannabimimetic and analgesic effects in mice. We found that four of the five minor cannabinoids showed cannabimimetic activity, while one was efficacious in relieving chronic neuropathic pain. This work is important in further evaluating the activity of these drugs, which are seeing wider public use with marijuana legalization.</p>","PeriodicalId":16798,"journal":{"name":"Journal of Pharmacology and Experimental Therapeutics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11493438/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141248204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of Dual Inhibition at Dopamine Transporter and σ Receptors in the Discriminative-Stimulus Effects of Cocaine in Male Rats. 多巴胺转运体和σ受体双重抑制对雄性大鼠可卡因辨别刺激效应的影响
IF 3.1 3区 医学
Journal of Pharmacology and Experimental Therapeutics Pub Date : 2024-10-18 DOI: 10.1124/jpet.124.002239
Takato Hiranita, Su-Min Li, Jonathan L Katz
{"title":"Effects of Dual Inhibition at Dopamine Transporter and σ Receptors in the Discriminative-Stimulus Effects of Cocaine in Male Rats.","authors":"Takato Hiranita, Su-Min Li, Jonathan L Katz","doi":"10.1124/jpet.124.002239","DOIUrl":"10.1124/jpet.124.002239","url":null,"abstract":"<p><p>Previous studies demonstrated that sigma receptor (<i>σ</i>R) antagonists alone fail to alter cocaine self-administration despite blocking various other effects of cocaine. However, <i>σ</i>R antagonists when combined with dopamine transporter (DAT) inhibitors substantially decrease cocaine self-administration. To better understand the effects of this combination, the present study examined the effects of <i>σ</i>R antagonist and DAT inhibitor combinations in male rats discriminating cocaine (10 mg/kg, i.p.) from saline injections. The DAT inhibitors alone [(-)-2-β-carbomethoxy-3-β-(4-fluorophenyl)tropane 1,5-naphthalenedisulfonate monohydrate (WIN 35,428) and methylphenidate] at low (0.1-mg/kg) doses that were minimally active failed to shift the dose-effect function for discriminative-stimulus effects of cocaine to the left more than 2-fold. At 0.32 mg/kg the DAT inhibitors alone shifted the cocaine dose-effect function leftward 24- or 6.6-fold, respectively. The <i>σ</i>R antagonists (BD1008, BD1047, and BD1063) failed to fully substitute for cocaine, although BD1008 and BD1047 substituted partially. At 10 mg/kg, BD1008, BD1047, or BD1063 alone shifted the cocaine dose-effect function leftward less than 6.0-fold. In combination with 0.1 mg/kg WIN 35,428, the 10 mg/kg doses of <i>σ</i>R antagonists shifted the cocaine dose-effect function from 12.3- to 36.7-fold leftward, and with 0.32 mg/kg WIN 35,428 from 14.3- to 440-fold leftward. In combination with 0.1 mg/kg methylphenidate, those <i>σ</i>R antagonist doses shifted the cocaine dose-effect function from 5.5- to 55.0-fold leftward, and with 0.32 mg/kg methylphenidate from 10.5- to 48.1-fold leftward. The present results suggest that dual DAT/<i>σ</i>R inhibition produces agonist-like subjective effects that may promote decreases in self-administration obtained in previous studies. SIGNIFICANCE STATEMENT: There is currently no approved medication for treating stimulant abuse, although dopamine uptake inhibitors in combination with sigma receptor (<i>σ</i>R) antagonists decrease cocaine self-administration in laboratory animals. The present study assessed how this combination alters the discriminative-stimulus effects of cocaine in male rats. Results suggest that concurrent dopamine uptake inhibition and <i>σ</i>R antagonism together may promote decreases in self-administration, possibly by mimicking the subjective effects extant when subjects cease continued cocaine self-administration.</p>","PeriodicalId":16798,"journal":{"name":"Journal of Pharmacology and Experimental Therapeutics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11493437/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142046847","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cannabinoid 2 Receptor Activation Protects against Diabetic Cardiomyopathy through Inhibition of AGE/RAGE-Induced Oxidative Stress, Fibrosis, and Inflammasome Activation. 通过抑制 AGE/RAGE 诱导的氧化应激、纤维化和炎性体激活,激活大麻素 2 受体可预防糖尿病心肌病。
IF 3.1 3区 医学
Journal of Pharmacology and Experimental Therapeutics Pub Date : 2024-10-18 DOI: 10.1124/jpet.123.002037
Hebaallah Mamdouh Hashiesh, Sheikh Azimullah, Mohamed Fizur Nagoor Meeran, Dhanya Saraswathiamma, Seenipandi Arunachalam, Niraj Kumar Jha, Bassem Sadek, Ernest Adeghate, Gautam Sethi, Alia Albawardi, Saeeda Al Marzooqi, Shreesh Ojha
{"title":"Cannabinoid 2 Receptor Activation Protects against Diabetic Cardiomyopathy through Inhibition of AGE/RAGE-Induced Oxidative Stress, Fibrosis, and Inflammasome Activation.","authors":"Hebaallah Mamdouh Hashiesh, Sheikh Azimullah, Mohamed Fizur Nagoor Meeran, Dhanya Saraswathiamma, Seenipandi Arunachalam, Niraj Kumar Jha, Bassem Sadek, Ernest Adeghate, Gautam Sethi, Alia Albawardi, Saeeda Al Marzooqi, Shreesh Ojha","doi":"10.1124/jpet.123.002037","DOIUrl":"10.1124/jpet.123.002037","url":null,"abstract":"<p><p>Oxidative stress, fibrosis, and inflammasome activation from advanced glycation end product (AGE)-receptor of advanced glycation end product (RAGE) interaction contribute to diabetic cardiomyopathy (DCM) formation and progression. Our study revealed the impact of <i>β</i>-caryophyllene (BCP) on activating cannabinoid type 2 receptors (CB2Rs) against diabetic complication, mainly cardiomyopathy and investigated the underlying cell signaling pathways in mice. The murine model of DCM was developed by feeding a high-fat diet with streptozotocin injections. After the development of diabetes, the animals received a 12-week oral BCP treatment at a dose of 50 mg/kg/body weight. BCP treatment showed significant improvement in glucose tolerance and insulin resistance and enhanced serum insulin levels in diabetic animals. BCP treatment effectively reversed the heart remodeling and restored the phosphorylated troponin I and sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a expression. Ultrastructural examination showed reduced myocardial cell injury in DCM mice treated with BCP. The preserved myocytes were found to be associated with reduced expression of AGE/RAGE in DCM mice hearts. BCP treatment mitigated oxidative stress by inhibiting expression of NADPH oxidase 4 and activating phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/nuclear factor erythroid 2-related factor 2 (Nrf2) signaling. Also, BCP suppressed cardiac fibrosis and endothelial-to-mesenchymal transition in DCM mice by inhibiting transforming growth factor β (TGF-β)/suppressor of mothers against decapentaplegic (Smad) signaling. Further, BCP treatment suppressed nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome activation in DCM mice and alleviated cellular injury to the pancreatic tissues evidenced by significant elevation of the number of insulin-positive cells. To demonstrate a CB2R-dependent mechanism of BCP, another group of DCM mice were pretreated with AM630, a CB2R antagonist. AM630 was observed to abrogate the beneficial effects of BCP in DCM mice. Taken together, BCP demonstrated the potential to protect the myocardium and pancreas of DCM mice mediating CB2R-dependent mechanisms. SIGNIFICANCE STATEMENT: BCP, a CB2R agonist, shows protection against DCM. BCP attenuates oxidative stress, inflammation, and fibrosis in DCM via activating CB2Rs. BCP mediating CB2R activation favorably modulates AGE/RAGE, PI3K/AKT/Nrf2<i>β</i> and TGF-<i>β</i>/Smad and (NLRP3) inflammasome in diabetic cardiomyopathy.</p>","PeriodicalId":16798,"journal":{"name":"Journal of Pharmacology and Experimental Therapeutics","volume":null,"pages":null},"PeriodicalIF":3.1,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141492388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信