Journal of Nuclear Engineering and Radiation Science最新文献

筛选
英文 中文
System Thermal-hydraulics Model for Fluoride Salt-Cooled Reactor Based On Small Advanced High Temperature Reactor (smAHTR) Design Concept 基于小型先进高温堆(smAHTR)设计理念的氟盐冷堆系统热工模型
IF 0.4
Journal of Nuclear Engineering and Radiation Science Pub Date : 2023-05-05 DOI: 10.1115/1.4062500
Shu Jun Wang, Xianmin Huang, B. Bromley
{"title":"System Thermal-hydraulics Model for Fluoride Salt-Cooled Reactor Based On Small Advanced High Temperature Reactor (smAHTR) Design Concept","authors":"Shu Jun Wang, Xianmin Huang, B. Bromley","doi":"10.1115/1.4062500","DOIUrl":"https://doi.org/10.1115/1.4062500","url":null,"abstract":"\u0000 A system thermal-hydraulics model for a fluoride-salt-cooled high-temperature reactor (FHR) based on the small modular advanced high-temperature reactor (SmAHTR) design concept is developed, using RELAP5-3D. The SmAHTR components modelled in the simulations include: the reactor core, lower plenum, upper plenum, top plenum, three Primary Heat Exchangers (PHX's) equipped with three primary pumps, and three Director Reactor Auxiliary Cooling System (DRACS) equipped with three fluid diodes. Flows through the reactor core are represented by 19 individual fuel channels, one reflector-hole channel, and one downcomer channel. In each of the 19 SmAHTR fuel block channels, the fuel elements are modeled in 5 groups using 5 heat structures, each with their corresponding power level. The total reactor power is 125 MWth. Using representative core power distributions for the SmAHTR at beginning-of-cycle (BOC) and at end-of-cycle (EOC), two steady-state system thermal-hydraulic model simulations with RELAP5-3D were performed using a default pressure drop loss factor of 1.5 for all 19 fuel channels. Exit coolant temperatures ranged from 688°C to 739°C (BOC) and from 696°C to 721°C (EOC), while peak fuel centerline temperatures in the highest power block were 1,249°C (BOC) and 1,029°C (EOC). By adjusting the loss factors to modify coolant flow rates in each channel, a more uniform exit coolant temperature was possible.","PeriodicalId":16756,"journal":{"name":"Journal of Nuclear Engineering and Radiation Science","volume":null,"pages":null},"PeriodicalIF":0.4,"publicationDate":"2023-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85405420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Strain Localisation and Fracture of Nuclear Reactor Core Materials 核反应堆堆芯材料的应变局部化与断裂
IF 0.4
Journal of Nuclear Engineering and Radiation Science Pub Date : 2023-05-04 DOI: 10.3390/jne4020026
M. Griffiths
{"title":"Strain Localisation and Fracture of Nuclear Reactor Core Materials","authors":"M. Griffiths","doi":"10.3390/jne4020026","DOIUrl":"https://doi.org/10.3390/jne4020026","url":null,"abstract":"The production of prismatic dislocation loops in nuclear reactor core materials results in hardening because the loops impede dislocation motion. Yielding often occurs by a localised clearing of the loops through interactions with gliding dislocations called channeling. The cleared channels represent a softer material within which most of the subsequent deformation is localized. Channeling is often associated with hypothetical dislocation pileup and intergranular cracking in reactor components although the channels themselves do not amplify stress as one would expect from a pileup. The channels are often similar in appearance to twins leading to the possibility that twins are sometimes mistakenly identified as channels. Neither twins nor dislocation channels, which are bulk shears, produce the same stress conditions as a pileup on a single plane. At high doses, when cavities are produced (either He-stabilised bubbles at low temperatures or voids at high temperatures), there can be reduced ductility because the material is already in an equivalent advanced stage of microscopic necking. He-stabilised cavities form preferentially on grain boundaries and at precipitate or incoherent twin/ε-martensite interfaces. The higher planar density of the cavities, coupled with the incompatibility at the interface, results in a preferential failure known as He embrittlement. Strain localisation and inter- or intragranular failure are dependent on many factors that are ultimately microstructural in nature. The mechanisms are described and discussed in relation to reactor core materials.","PeriodicalId":16756,"journal":{"name":"Journal of Nuclear Engineering and Radiation Science","volume":null,"pages":null},"PeriodicalIF":0.4,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76735181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Bulk Tungsten Fiber-Reinforced Tungsten (Wf/W) Composites Using Yarn-Based Textile Preforms 基于纱线纺织预成型的块状钨纤维增强钨(Wf/W)复合材料
IF 0.4
Journal of Nuclear Engineering and Radiation Science Pub Date : 2023-05-04 DOI: 10.3390/jne4020027
Alexander Lau, J. Coenen, D. Schwalenberg, Y. Mao, T. Höschen, Johann Riesch, L. Raumann, Michael Treitz, Hanns Gietl, A. Terra, Beatrix Göhts, C. Linsmeier, K. Theis-Bröhl, J. Gonzalez‐Julian
{"title":"Bulk Tungsten Fiber-Reinforced Tungsten (Wf/W) Composites Using Yarn-Based Textile Preforms","authors":"Alexander Lau, J. Coenen, D. Schwalenberg, Y. Mao, T. Höschen, Johann Riesch, L. Raumann, Michael Treitz, Hanns Gietl, A. Terra, Beatrix Göhts, C. Linsmeier, K. Theis-Bröhl, J. Gonzalez‐Julian","doi":"10.3390/jne4020027","DOIUrl":"https://doi.org/10.3390/jne4020027","url":null,"abstract":"The use of tungsten fiber-reinforced tungsten composites (Wf/W) has been demonstrated to significantly enhance the mechanical properties of tungsten (W) by incorporating W-fibers into the W-matrix. However, prior research has been restricted by the usage of single fiber-based textile fabrics, consisting of 150 µm warp and 50 µm weft filaments, with limited homogeneity, reproducibility, and mechanical properties in bulk structures due to the rigidity of the 150 µm W-fibers. To overcome this limitation, two novel textile preforms were developed utilizing radial braided W-yarns with 7 core and 16 sleeve filaments (R.B. 16 + 7), with a diameter of 25 µm each, as the warp material. In this study, bulk composites of two different fabric types were produced via a layer-by-layer CVD process, utilizing single 50 µm filaments (type 1) and R.B. 16 + 7 yarns (type 2) as weft materials. The produced composites were sectioned into KLST-type specimens based on DIN EN ISO 179-1:2000 using electrical discharge machining (EDM) and subjected to three-point bending tests. Both composites demonstrated enhanced mechanical properties with pseudo-ductile behavior at room temperature and withstood over 10,000 load cycles between 50–90% of their respective maximum load without sample fracture in three-point cyclic loading tests. Furthermore, a novel approach to predict the fatigue behavior of the material under cyclic loading was developed based on the high reproducibility of the composites produced, especially for the composite based on type 1. This approach provides a new benchmark for upscaling endeavors and may enable a better prediction of the service life of the produced components made of Wf/W in the future. In comparison, the composite based on fabric type 1 demonstrated superior results in manufacturing performance and mechanical properties. With a high relative average density (>97%), a high fiber volume fraction (14–17%), and a very homogeneous fiber distribution in the CVD-W matrix, type 1 shows a promising option to be further tested in high heat flux tests and to be potentially used as an alternative to currently used materials for the most stressed components of nuclear fusion reactors or other potential application fields such as concentrated solar power (CSP), aircraft turbines, the steel industry, quantum computing, or welding tools. Type 2 composites have a higher layer spacing compared to type 1, resulting in gaps within the matrix and less homogeneous material properties. While type 2 composites have demonstrated a notable enhancement over 150 µm fiber-based composites, they are not viable for industrial scale-up unlike type 1 composites.","PeriodicalId":16756,"journal":{"name":"Journal of Nuclear Engineering and Radiation Science","volume":null,"pages":null},"PeriodicalIF":0.4,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73794827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Handbook of Generation IV Nuclear Reactors Edition 2 第四代核反应堆手册第2版
IF 0.4
Journal of Nuclear Engineering and Radiation Science Pub Date : 2023-04-21 DOI: 10.1115/1.4062402
J. Riznic
{"title":"Handbook of Generation IV Nuclear Reactors Edition 2","authors":"J. Riznic","doi":"10.1115/1.4062402","DOIUrl":"https://doi.org/10.1115/1.4062402","url":null,"abstract":"\u0000 This second edition of the Handbook of Generation IV Nuclear Reactors (https://www.elsevier.com/books/handbook-of-generation-iv-nuclear-reactors/9780128205884) combines the history of development, research, industrial-operating experience, advanced designs, systems and safety analysis, and applications of nuclear energy. Impressive number of 64 recognized nuclear-energy-system experts from 13 nuclear-power countries: Belgium, Canada, China, France, Germany, India, Japan, Russia, Republic of Korea, Ukraine, Switzerland, UK, and USA, contributed to this book. The second edition builds on the successes of the first edition published in 2016 (Handbook of Generation IV Nuclear Reactors, 2016. Editor: I.L. Pioro, Elsevier - Woodhead Publishing).","PeriodicalId":16756,"journal":{"name":"Journal of Nuclear Engineering and Radiation Science","volume":null,"pages":null},"PeriodicalIF":0.4,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77012371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On Design Challenges of Portable Nuclear Magnetic Resonance System 便携式核磁共振系统的设计挑战
IF 0.4
Journal of Nuclear Engineering and Radiation Science Pub Date : 2023-04-18 DOI: 10.3390/jne4020025
Mohsen Hosseinzadehtaher, Silvanus D’silva, Matthew Baker, Ritesh Kumar, Nathan T. Hein, M. Shadmand, S. Jagadish, B. Ghanbarian
{"title":"On Design Challenges of Portable Nuclear Magnetic Resonance System","authors":"Mohsen Hosseinzadehtaher, Silvanus D’silva, Matthew Baker, Ritesh Kumar, Nathan T. Hein, M. Shadmand, S. Jagadish, B. Ghanbarian","doi":"10.3390/jne4020025","DOIUrl":"https://doi.org/10.3390/jne4020025","url":null,"abstract":"This article studies the optimal design approach for a portable nuclear magnetic resonance (NMR) system for use in non-destructive flow measurement applications. The mechanical and electromagnetic design procedures were carried out using the Ansys Maxwell finite-element analysis (FEA) software tool. The proposed procedure considered homogeneity and strength constraints while ensuring the desired functionality of the intended device for a given application. A modified particle swarm optimization (MPSO) algorithm was proposed as a reference design framework for optimization stages. The optimally designed NMR tool was prototyped, and its functionality was validated via several case studies. To assess the functionality of the prototyped device, Larmor frequency for hydrogen atom was captured and compared with theoretical results. Furthermore, the functionality and accuracy of the prototyped NMR tool is compared to the off-the-shelf NMR tool. Results demonstrated the feasibility and accuracy of the prototyped NMR tool constrained by factors, such as being lightweight and compact.","PeriodicalId":16756,"journal":{"name":"Journal of Nuclear Engineering and Radiation Science","volume":null,"pages":null},"PeriodicalIF":0.4,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87012065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine-Learning-Based Composition Analysis of the Stability of V–Cr–Ti Alloys 基于机器学习的V-Cr-Ti合金稳定性成分分析
IF 0.4
Journal of Nuclear Engineering and Radiation Science Pub Date : 2023-04-14 DOI: 10.3390/jne4020024
K. Tanabe
{"title":"Machine-Learning-Based Composition Analysis of the Stability of V–Cr–Ti Alloys","authors":"K. Tanabe","doi":"10.3390/jne4020024","DOIUrl":"https://doi.org/10.3390/jne4020024","url":null,"abstract":"Machine learning methods allow the prediction of material properties, potentially using only the elemental composition of a molecule or compound, without the knowledge of molecular or crystalline structures. Herein, a composition-based machine learning prediction of the material properties of V–Cr–Ti alloys is demonstrated. Our machine-learning-based prediction of the stability of the V–Cr–Ti alloys is qualitatively consistent with the composition-dependent experimental data of the ductile–brittle transition temperature and swelling. Furthermore, our computational results suggest the existence of a composition region, Cr+Ti ~ 60 wt.%, at a significantly low ductile–brittle transition temperature. This outcome contrasts with a reportedly low Cr+Ti content of less than 10 wt.% in conventional V–Cr–Ti alloys. Machine-learning-based numerical stability prediction is useful for the design and analysis of metal alloys, particularly for multicomponent alloys such as high-entropy alloys, to develop materials for nuclear fusion reactors.","PeriodicalId":16756,"journal":{"name":"Journal of Nuclear Engineering and Radiation Science","volume":null,"pages":null},"PeriodicalIF":0.4,"publicationDate":"2023-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83075560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental Investigation of Control Rod Drops into Perturbed Fuel Assemblies 控制棒滴入扰动燃料组件的实验研究
IF 0.4
Journal of Nuclear Engineering and Radiation Science Pub Date : 2023-04-06 DOI: 10.1115/1.4062275
N. Park, O. Kwon, Y. Yoo, Tae-Suk Kim
{"title":"Experimental Investigation of Control Rod Drops into Perturbed Fuel Assemblies","authors":"N. Park, O. Kwon, Y. Yoo, Tae-Suk Kim","doi":"10.1115/1.4062275","DOIUrl":"https://doi.org/10.1115/1.4062275","url":null,"abstract":"\u0000 This paper discusses permanent deformation of the fuel assembly of pressurized water reactors that can satisfy a drop time requirement of the control rod assembly. During a seismic event, the fuel assemblies and the reactor core exhibit transient vibration. When the fuel assemblies collide, they develop impact forces in the spacer grids along the fuel assemblies. If the impact forces on some spacer grids of the fuel assembly exceed an allowable strength, the buckling occurs in the corresponding spacer grids, followed by permanent deformation. The geometry change of the buckled spacer grids leads to the movement of the guide tube positions in the fuel assembly. Therefore the geometry change is associated with the distortion of the control rod drop path. In this study, the permanent deformation of the spacer grids was measured during the impact tests, and the maximum deviation of the guide tube from the original position was reviewed. Control rod drop tests were also performed to measure the change in drop time according to the deformation of the fuel assembly. Using actuators in the loop test facility, the authors realized the first and second bending mode shapes of the fuel assembly under the flowing water condition. Based on a series of drop tests, the critical fuel assembly deformation was identified that could lead to a violation of an allowable drop time of the control rod.","PeriodicalId":16756,"journal":{"name":"Journal of Nuclear Engineering and Radiation Science","volume":null,"pages":null},"PeriodicalIF":0.4,"publicationDate":"2023-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83022679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preliminary Study on the Thermal Neutron Scattering Cross-Section for HinH2O in Small Modular Reactors HinH2O在小型模块堆中热中子散射截面的初步研究
IF 0.4
Journal of Nuclear Engineering and Radiation Science Pub Date : 2023-04-04 DOI: 10.3390/jne4020023
Jun Wu, Yixue Chen
{"title":"Preliminary Study on the Thermal Neutron Scattering Cross-Section for HinH2O in Small Modular Reactors","authors":"Jun Wu, Yixue Chen","doi":"10.3390/jne4020023","DOIUrl":"https://doi.org/10.3390/jne4020023","url":null,"abstract":"Neutron thermalization leads to the complexity of the scattering cross-section calculation, which influences the accuracy of the neutron transport calculation in the thermal energy range. The higher precision of thermal scattering data is demanded in the small modular reactors (SMRs) design, especially for small-sized PWRs and SCWRs. Additionally, the thermal neutron scattering problems in supercritical water have not yet been solved. In this study, the thermal neutron scattering problems in subcritical water are tested. Based on thermal neutron scattering theory, the GA model and IKE model were analyzed. This work selected the corresponding input parameters, such as the frequency spectrum, the discrete oscillator energy, weight parameters and so on, as well as preliminary studies on how to calculate the thermal scattering data for HinH2O to accomplish the calculation at various temperatures by developing LIPER code. The deviation between the calculated and reference results, which were both obtained by the Monte Carlo code, COSRMC, was below 0.2 pcm. The deviation of the scattering cross-section between the calculation results and reference was below 0.1%, indicating the reasonability of this study’s thermal scattering data calculation.","PeriodicalId":16756,"journal":{"name":"Journal of Nuclear Engineering and Radiation Science","volume":null,"pages":null},"PeriodicalIF":0.4,"publicationDate":"2023-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74838789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Eddy Current Flow Meter Measurements in Liquid Sodium at High Temperatures 涡流流量计在高温下测量液态钠
IF 0.4
Journal of Nuclear Engineering and Radiation Science Pub Date : 2023-03-31 DOI: 10.1115/1.4062239
N. Krauter, A. Onea, G. Gerbeth, S. Eckert
{"title":"Eddy Current Flow Meter Measurements in Liquid Sodium at High Temperatures","authors":"N. Krauter, A. Onea, G. Gerbeth, S. Eckert","doi":"10.1115/1.4062239","DOIUrl":"https://doi.org/10.1115/1.4062239","url":null,"abstract":"\u0000 We present measurement results for the flow rate of liquid sodium at temperatures up to 700°C that were obtained with a high temperature prototype of an immersed Eddy Current Flow Meter. The experimental campaign was conducted at the SOLTEC-2 sodium loop at KIT. The main objective of the experiments is the high temperature qualification of the Eddy Current Flow Meter as part of the safety instrumentation of generation IV liquid metal cooled fast reactors. There it is intended to be used for monitoring the flow rate of the coolant and to detect possible blockages of sub assemblies. Due to the large liquid metal volume, the sensor has to be located close to the sub assemblies, therefore measurements from outside of the vessel are not possible and an immersed sensor is required. We demonstrate the successful application of the immersed Eddy Current Flow Meter at such high temperatures and identify the relevant effects with impact on the sensor performance.","PeriodicalId":16756,"journal":{"name":"Journal of Nuclear Engineering and Radiation Science","volume":null,"pages":null},"PeriodicalIF":0.4,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89229692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ITER Test Blanket Module—ALARA Investigations for Port Cell Pipe Forest Replacement ITER试验包层模块- alara对端口单元管道森林替换的研究
IF 0.4
Journal of Nuclear Engineering and Radiation Science Pub Date : 2023-03-17 DOI: 10.3390/jne4010022
J. Friconneau, T. Batal, O. David, Chiara Di Paolo, F. Ferlay, S. Gazzotti, L. Giancarli, Christophe Lacroix, J. Martins, Benjamin Michel, J. Travere
{"title":"ITER Test Blanket Module—ALARA Investigations for Port Cell Pipe Forest Replacement","authors":"J. Friconneau, T. Batal, O. David, Chiara Di Paolo, F. Ferlay, S. Gazzotti, L. Giancarli, Christophe Lacroix, J. Martins, Benjamin Michel, J. Travere","doi":"10.3390/jne4010022","DOIUrl":"https://doi.org/10.3390/jne4010022","url":null,"abstract":"The objective of the ITER test blanket module (TBM) program is to provide experimental data on the performance of the breeding blankets in the integrated fusion nuclear environment. The ITER test blanket modules are installed and operated inside the vacuum vessel (VV) at the equatorial ports located within port plugs (PP), and each PP includes two TBMs. After each 18-month-long plasma operation campaign, the TBM research plan testing program requires the replacement of the TBMs with new ones during the ITER long-term shutdown, called long-term maintenance (LTM). The replacement of a TBM requires the removal/reinstallation of all test blanket system (TBS) equipment present in the port cell (PC), including those in the port interspace (PI), called pipe forest (PF). TBSs shall be designed so that occupational radiation exposure (ORE) can be as low as reasonably achievable (ALARA) over the life of the plant to follow the ITER policy. To implement ALARA process requirements, design activities shall consider careful integration investigations starting from the early phase to address all engineering aspects of the replacement sequence. The case study focuses on the PF replacement, in particular the port cell operations. This paper describes the investigations and findings of the ALARA optimisation process implementation in the early engineering phase of the PF.","PeriodicalId":16756,"journal":{"name":"Journal of Nuclear Engineering and Radiation Science","volume":null,"pages":null},"PeriodicalIF":0.4,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75411960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信