Journal of Petroleum Exploration and Production Technology最新文献

筛选
英文 中文
Automatic arrival-time picking of P- and S-waves of micro-seismic events based on relative standard generative adversarial network and GHRA 基于相对标准生成式对抗网络和 GHRA 的微地震事件 P 波和 S 波到达时间自动选取技术
IF 2.2 4区 工程技术
Journal of Petroleum Exploration and Production Technology Pub Date : 2024-05-11 DOI: 10.1007/s13202-024-01805-8
Jianxian Cai, Zhijun Duan, Fenfen Yan, Yuzi Zhang, Ruwang Mu, Huanyu Cai, Zhefan Ding
{"title":"Automatic arrival-time picking of P- and S-waves of micro-seismic events based on relative standard generative adversarial network and GHRA","authors":"Jianxian Cai, Zhijun Duan, Fenfen Yan, Yuzi Zhang, Ruwang Mu, Huanyu Cai, Zhefan Ding","doi":"10.1007/s13202-024-01805-8","DOIUrl":"https://doi.org/10.1007/s13202-024-01805-8","url":null,"abstract":"<p>Rapid, high-precision pickup of microseismic P- and S-waves is an important basis for microseismic monitoring and early warning. However, it is difficult to provide fast and highly accurate pickup of micro-seismic P- and S-waves arrival-time. To address this, the study proposes a lightweight and high-precision micro-seismic P- and S-waves arrival times picking model, lightweight adversarial U-shaped network (LAU-Net), based on the framework of the generative adversarial network, and successfully deployed in low-power devices. The pickup network constructs a lightweight feature extraction layer (GHRA) that focuses on extracting pertinent feature information, reducing model complexity and computation, and speeding up pickup. We propose a new adversarial learning strategy called application-aware loss function. By introducing the distribution difference between the predicted results and the artificial labels during the training process, we improve the training stability and further improve the pickup accuracy while ensuring the pickup speed. Finally, 8986 and 473 sets of micro-seismic events are used as training and testing sets to train and test the LAU-Net model, and compared with the STA/LTA algorithm, CNNDET+CGANet algorithm, and UNet++ algorithm, the speed of each pickup is faster than that of the other algorithms by 11.59ms, 15.19ms, and 7.79ms, respectively. The accuracy of the P-wave pickup is improved by 0.221, 0.01, and 0.029, respectively, and the S-wave pickup accuracy is improved by 0.233, 0.135, and 0.102, respectively. It is further applied in the actual project of the Shengli oilfield in Sichuan. The LAU-Net model can meet the needs of practical micro-seismic monitoring and early warning and provides a new way of thinking for accurate and fast on-time picking of micro-seismic P- and S-waves.</p>","PeriodicalId":16723,"journal":{"name":"Journal of Petroleum Exploration and Production Technology","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140937249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Acoustic impedance prediction based on extended seismic attributes using multilayer perceptron, random forest, and extra tree regressor algorithms 利用多层感知器、随机森林和额外树回归算法,基于扩展地震属性进行声阻抗预测
IF 2.2 4区 工程技术
Journal of Petroleum Exploration and Production Technology Pub Date : 2024-05-08 DOI: 10.1007/s13202-024-01795-7
Lutfi Mulyadi Surachman, Abdulazeez Abdulraheem, Abdullatif Al-Shuhail, Sanlinn I. Kaka
{"title":"Acoustic impedance prediction based on extended seismic attributes using multilayer perceptron, random forest, and extra tree regressor algorithms","authors":"Lutfi Mulyadi Surachman, Abdulazeez Abdulraheem, Abdullatif Al-Shuhail, Sanlinn I. Kaka","doi":"10.1007/s13202-024-01795-7","DOIUrl":"https://doi.org/10.1007/s13202-024-01795-7","url":null,"abstract":"<p>Acoustic impedance is the product of the density of a material and the speed at which an acoustic wave travels through it. Understanding this relationship is essential because low acoustic impedance values are closely associated with high porosity, facilitating the accumulation of more hydrocarbons. In this study, we estimate the acoustic impedance based on nine different inputs of seismic attributes in addition to depth and two-way travel time using three supervised machine learning models, namely extra tree regression (ETR), random forest regression, and a multilayer perceptron regression algorithm using the scikit-learn library. Our results show that the <i>R</i><sup>2</sup> of multilayer perceptron regression is 0.85, which is close to what has been reported in recent studies. However, the ETR method outperformed those reported in the literature in terms of the mean absolute error, mean squared error, and root-mean-squared error. The novelty of this study lies in achieving more accurate predictions of acoustic impedance for exploration.</p>","PeriodicalId":16723,"journal":{"name":"Journal of Petroleum Exploration and Production Technology","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140883483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Maximizing the capacity and benefit of CO2 storage in depleted oil reservoirs 最大限度地提高枯竭油藏的二氧化碳封存能力和效益
IF 2.2 4区 工程技术
Journal of Petroleum Exploration and Production Technology Pub Date : 2024-05-07 DOI: 10.1007/s13202-024-01816-5
Qian Sang, Xia Yin, Jun Pu, Xuejie Qin, Feifei Gou, Wenchao Fang
{"title":"Maximizing the capacity and benefit of CO2 storage in depleted oil reservoirs","authors":"Qian Sang, Xia Yin, Jun Pu, Xuejie Qin, Feifei Gou, Wenchao Fang","doi":"10.1007/s13202-024-01816-5","DOIUrl":"https://doi.org/10.1007/s13202-024-01816-5","url":null,"abstract":"<p>Sequestering CO<sub>2</sub> in depleted oil reservoirs provides one of the most appealing measures to reduce greenhouse gases (GHG) concentration in the atmosphere. The remaining liquids after enhanced oil recovery (EOR) processes, including residual oil and remaining water, lead to the main challenges to this approach. How to effectively evacuate a depleted oil reservoir by recovering not only residual oil but also remaining water is a critical consideration for this type of CO<sub>2</sub> sequestration. This paper presents conceptual investigations concerning the methods which effectively evacuate depleted oil reservoirs from both the displacement efficiency and the sweep efficiency points of view. To improve the displacement efficiency, surfactant slug and solvent slug injection was examined using a core scale numerical model. Investigations regarding improving sweep efficiency, such as horizontal well pattern infilling and foam injection, were carried out based on a typical row well pattern. Simulation results showed that surfactant slug which modified the relative permeability and capillary pressure remarkably reduced both residual oil saturation and remaining water saturation. A CO<sub>2</sub> slug injected before surfactant slug can help improve the oil recovery. Solvent enriched CO<sub>2</sub> slug also remarkably reduced the residual oil saturation to as low as 2%. Horizontal well pattern infilling had great advantage for thick or inclined reservoirs, and foam slug injection greatly improved CO<sub>2</sub> storage capacity in thin reservoirs by improving the sweep efficiency. Maximum mobility reduction (MRF) is the most important parameter to maximize the storage capacity and the benefit. The variation of CO<sub>2</sub> storage capacity along with CO<sub>2</sub> slug size. Larger foam slug size will play a better storage performance. The conceptual simulation investigations confirmed that depleted oil reservoirs can be effectively evacuated for CO<sub>2</sub> storage. Depleted oil reservoirs with maximum evacuation are the best candidates for CO<sub>2</sub> sequestrations.</p>","PeriodicalId":16723,"journal":{"name":"Journal of Petroleum Exploration and Production Technology","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140883723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental study on the pseudo threshold pressure gradient of supported fractures in shale reservoirs 页岩储层中支撑裂缝伪阈值压力梯度的实验研究
IF 2.2 4区 工程技术
Journal of Petroleum Exploration and Production Technology Pub Date : 2024-05-07 DOI: 10.1007/s13202-024-01791-x
Jidong Gao, Weiyao Zhu, Aishan Li, Yuexiang He, Liaoyuan Zhang, Debin Kong
{"title":"Experimental study on the pseudo threshold pressure gradient of supported fractures in shale reservoirs","authors":"Jidong Gao, Weiyao Zhu, Aishan Li, Yuexiang He, Liaoyuan Zhang, Debin Kong","doi":"10.1007/s13202-024-01791-x","DOIUrl":"https://doi.org/10.1007/s13202-024-01791-x","url":null,"abstract":"<p>Pseudo threshold pressure gradient (PTPG) exists in the propped fractured reservoir, but its nonlinear flow law remains unclear. The effects of the mineral composition of shale and microstructure of fracturing fluid on PTPG were analyzed by X-ray diffraction and liquid nitrogen quick-freezing method. The results demonstrate that a proppant with a large particle size is more likely to form an effective flow channel and reduce liquid flow resistance, thus decreasing PTPG and increasing conductivity. The polymer fracturing fluid with rectangular microstructures significantly increased the PTPG supporting the fractured core. Experimental results show that the PTPG of the resin-coated sand-supported core in the fracturing fluid with a concentration of 1.2% is 245 times higher than that in the fracturing fluid with a concentration of 0.1% when the confining pressure is 5 MPa. Wetting hysteresis and the Jamin effect are responsible for the rise of PTPG in two-phase flow. The equivalent fracture width shows a good power function relationship with the PTPG. Thus, this study further explains the nonlinear flow behavior of reservoirs with fully propped fractures.</p>","PeriodicalId":16723,"journal":{"name":"Journal of Petroleum Exploration and Production Technology","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140883488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sand screen selection by sand retention test: a review of factors affecting sand control design 通过留砂试验选择筛砂:影响砂控制设计的因素综述
IF 2.2 4区 工程技术
Journal of Petroleum Exploration and Production Technology Pub Date : 2024-05-07 DOI: 10.1007/s13202-024-01803-w
Javed Akbar Khan, Aimi Zahraa Zainal, Khairul Nizam Idris, Angga Pratama Herman, Baoping Cai, Mohd Azuwan Maoinser
{"title":"Sand screen selection by sand retention test: a review of factors affecting sand control design","authors":"Javed Akbar Khan, Aimi Zahraa Zainal, Khairul Nizam Idris, Angga Pratama Herman, Baoping Cai, Mohd Azuwan Maoinser","doi":"10.1007/s13202-024-01803-w","DOIUrl":"https://doi.org/10.1007/s13202-024-01803-w","url":null,"abstract":"<p>The installation of sand screens in open-hole completions in the wellbore is crucial for managing sand production. The main reason for using standalone screens in open-hole completions is their relatively reduced operational complexity compared to other sand control technologies. However, directly applying the screen to the bottom of the hole can lead to an incorrect screen type selection, resulting in an unreliable sand control method. To address this issue, a sand retention test is conducted to evaluate the performance of a standalone screen before field installation. Nevertheless, current sand retention test setups encounter several challenges. These include difficulties in identifying minimum retention requirements, interpreting results in the context of field conditions, and replicating field-specific parameters. The existing sand retention test introduces uncertainties, such as inaccurately replicating field requirements, inconsistent selection of wetting fluids, flow rates, and channel formation, leading to variations in the choice of the optimal screen using this test. In response to these challenges, this study aims to review the sand retention test and propose an improved sand retention method to overcome these problems. The focus of this article is to provide an in-depth analysis of previous sand retention test setups, their contributions to characterizing sand screens, and the parameters utilized in determining test outcomes. Additionally, this review outlines a procedure to investigate the impact of different particle sizes on screen erosion. Key findings emphasize the importance of using high-quality materials, proper screen design to resist damage and erosion, achieving acceptable natural packing behind the screen, and considering factors such as geology, wellbore conditions, and installation techniques. The analysis reveals that a high quantity of finer and poorly sorted sand increases sand production. The study recommends performing a sand pack test closer to reservoir conditions for better evaluation. Premium sand screens demonstrate the highest retention capacity, followed by metal mesh and wire-wrapped screens. Additionally, geotextiles show potential for enhancing sand retention, and screen design affects erosion resistance and service life.</p>","PeriodicalId":16723,"journal":{"name":"Journal of Petroleum Exploration and Production Technology","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140883716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrity assessment of shale gas wells in Changning Block based on hierarchical analysis method 基于层次分析法的长宁区块页岩气井完整性评估
IF 2.2 4区 工程技术
Journal of Petroleum Exploration and Production Technology Pub Date : 2024-05-05 DOI: 10.1007/s13202-024-01806-7
Luo Wei, Chenlong Fu, Wenzhe Li, Yanzhe Gao, Lixue Guo, Yangyang Liu, Fuyuan Liang, Aoyin Jia, Quanying Guo
{"title":"Integrity assessment of shale gas wells in Changning Block based on hierarchical analysis method","authors":"Luo Wei, Chenlong Fu, Wenzhe Li, Yanzhe Gao, Lixue Guo, Yangyang Liu, Fuyuan Liang, Aoyin Jia, Quanying Guo","doi":"10.1007/s13202-024-01806-7","DOIUrl":"https://doi.org/10.1007/s13202-024-01806-7","url":null,"abstract":"<p>The integrity of shale gas wells is crucial in ensuring safety and efficiency throughout the development process. Such integrity spans the entire process of drilling and fracturing horizontal wells and is an essential indicator for ensuring safe and stable production throughout the lifespan of the well. This study investigates methods for assessing the integrity of shale gas wells by employing the analytic hierarchy process combined with experimental data to establish evaluation criteria and weights. The assessment is carried out specifically on shale gas wells in Changning Block. Results indicate that the integrity of these shale gas wells is influenced by various factors, such as drilling and fracturing processes. Moreover, the integrity assessment of indicators such as oil layer casing/technical casing, liquid carrying capacity, and tube column deformation is relatively low, indicating a need for enhanced monitoring and management. The comprehensive evaluation results indicate that, overall, the integrity rating of shale gas wells is generally considered “common,” but some potential safety hazards still remain that require timely attention and resolution. Case analysis reveals varying levels of integrity risks in shale gas wells. Case 1’s score of 93.51 warrants attention but is still deemed generally safe. However, Case 2’s score of 73.89 indicates a disaster level, emphasizing urgent intervention needs. Critical factors such as pressure, cementation quality, and corrosion demand proactive management for safe, sustainable operations.</p>","PeriodicalId":16723,"journal":{"name":"Journal of Petroleum Exploration and Production Technology","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140883474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research on the factors influencing the width of hydraulic fractures through layers 研究影响穿过地层的水力裂缝宽度的因素
IF 2.2 4区 工程技术
Journal of Petroleum Exploration and Production Technology Pub Date : 2024-05-04 DOI: 10.1007/s13202-024-01815-6
Yunpei Liang, Mao Wang, Yongjiang Luo, Tao Rui, Xing Wang, Yu Meng
{"title":"Research on the factors influencing the width of hydraulic fractures through layers","authors":"Yunpei Liang, Mao Wang, Yongjiang Luo, Tao Rui, Xing Wang, Yu Meng","doi":"10.1007/s13202-024-01815-6","DOIUrl":"https://doi.org/10.1007/s13202-024-01815-6","url":null,"abstract":"<p>The method of segmented hydraulic fracturing in the coal seam roof has proven to be an efficient technique for coalbed methane exploitation. However, the behavior of hydraulic fractures in multilayer formations with significant differences in mechanical properties is still unclear. This paper studied the variation in hydraulic fracture width at the coal-rock interface by employing experimental method with a true triaxial hydraulic fracturing experimental system and numerical simulation method. Results revealed that the hydraulic fracture more likely to expanded along the coal-rock interface instead of break through it with the small horizontal stress difference and low flow rate injection condition. And improving the injection flow rate lager than a critical value, the hydraulic fracture tends to break through the coal-rock interface. Hydraulic fractures in both mudstone and coal beds exhibited a trend of increasing and then decreasing of fracture width at the interface. Since the strength of the coal seam was lower compared to that of the mudstone, maintaining high pressure was no longer necessary when the hydraulic fracture crossed the interface and entered the coal seam, leading to a reduction in fracture width within the mudstone. During the later stages of fracturing, the entry of proppant into the coal seam became challenging, resulting in a phenomenon characterized by excessive fluid but insufficient sand. The time required for the fracture width to traverse the proppant was found to be inversely proportional to the difference in horizontal ground stress and the flow rate of the fracturing fluid. And it was directly proportional to the modulus of elasticity, permeability of the coal seam, and interface strength. The interface strength has the greatest influence on the width of hydraulic fractures. In conclusion, this study provides valuable insights into the behavior of hydraulic fractures in multilayer formations with varying mechanical properties. The findings contribute to a better understanding of the factors affecting hydraulic fracture width within coal seams, which can ultimately enhance the efficiency of coalbed methane exploitation.</p>","PeriodicalId":16723,"journal":{"name":"Journal of Petroleum Exploration and Production Technology","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140883715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving the in-situ upgrading of extra heavy oil using metal-based oil-soluble catalysts through oxidation process for enhanced oil recovery 利用金属基油溶性催化剂,通过氧化工艺提高特重油的原位升级,从而提高石油采收率
IF 2.2 4区 工程技术
Journal of Petroleum Exploration and Production Technology Pub Date : 2024-05-02 DOI: 10.1007/s13202-024-01813-8
Reza Nejad Zare, Seyedsaeed Mehrabi-Kalajahi, Mikhail A. Varfolomeev, Sarvar Talipov, Almaz L. Zinnatullin, Kamil G. Sadikov, Farit G. Vagizov
{"title":"Improving the in-situ upgrading of extra heavy oil using metal-based oil-soluble catalysts through oxidation process for enhanced oil recovery","authors":"Reza Nejad Zare, Seyedsaeed Mehrabi-Kalajahi, Mikhail A. Varfolomeev, Sarvar Talipov, Almaz L. Zinnatullin, Kamil G. Sadikov, Farit G. Vagizov","doi":"10.1007/s13202-024-01813-8","DOIUrl":"https://doi.org/10.1007/s13202-024-01813-8","url":null,"abstract":"<p>The demand for fuel from unconventional sources is increasing all over the world, however, there are still special and strict regulations regarding the methods of enhanced oil recovery as well as the content of the oil produced, including the amount of sulfur. In-situ combustion (ISC) is an attractive thermal method to enhance oil recovery and in-situ upgrading process. In this work, copper (II) oleate and copper (II) stearate were used for the oxidation of extra heavy oil with high sulfur content in the ISC process using a self-designed porous medium thermo-effect cell (PMTEC) and visual combustion tube. Using PMTEC the catalytic performances of the synthesized oil-soluble copper (II) oleate and copper (II) stearate and kinetic parameters such as activation energy using Ozawa-Flynn-Wall method were studied. The X-ray diffraction (XRD) and high-resolution field emission scanning electron microscopy were used to examine the characteristics of in-situ synthesized CuO nanoparticles during oxidation. As shown, the presence of oil-soluble copper (II) stearate and copper (II) oleate reduced oil viscosity from 9964 to 8000 and 6090 mPa˙s, respectively. Following ISC process in porous media in the presence of copper (II) oleate, the high sulfur extra heavy oil upgraded, and its sulfur content decreased from 10.33 to 6.79%. Additionally, SARA analysis revealed that asphaltene and resin content decreased in the presence of oil-soluble catalysts. During the oxidation reaction, homogeneous catalyst decomposed into nanoparticles, and heterogeneous catalyst is distributed uniformly in porous media and played an active role in the catalytic process. It should be noticed that, these kind of oil-soluble catalysts can be novel and highly potential candidates for initiation and oxidation of extra heavy oil in order to decrease the viscosity, enhanced oil recovery and production of the upgraded oil.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\u0000","PeriodicalId":16723,"journal":{"name":"Journal of Petroleum Exploration and Production Technology","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140883703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generation mechanism of overpressures caused by disequilibrium compaction in the northwestern Bozhong subbasin, China 中国西北部渤中次盆地非均衡压实引起的超压产生机理
IF 2.2 4区 工程技术
Journal of Petroleum Exploration and Production Technology Pub Date : 2024-05-02 DOI: 10.1007/s13202-024-01811-w
Liang Shi, Zhenkui Jin, Xiao’er Zhu, Mengli Lin, Baowen Guan
{"title":"Generation mechanism of overpressures caused by disequilibrium compaction in the northwestern Bozhong subbasin, China","authors":"Liang Shi, Zhenkui Jin, Xiao’er Zhu, Mengli Lin, Baowen Guan","doi":"10.1007/s13202-024-01811-w","DOIUrl":"https://doi.org/10.1007/s13202-024-01811-w","url":null,"abstract":"<p>In sedimentary basins, deep-seated overpressure conditions are frequently encountered. However, the precise origins of these overpressure conditions and the assessment of their formation times have long presented challenges. Previous studies have primarily relied on qualitative approaches to investigate overpressure origins, leading to substantial uncertainties in their findings. Based on theories such as the effective stress law, disequilibrium compaction, equilibrium depth, and nested fluid trapping containers in this paper, a new quantitative methodology is introduced for identifying the disequilibrium-compaction-induced origins of overpressure conditions. Additionally, the formation times of overpressure can be also estimated by nested fluid trapping container theory. This methodology is successfully applied to the northwestern Bozhong subbasin in the Bohai Bay Basin, China. The results indicate that the overpressure within the Dongying Formation of the northwestern Bozhong subbasin is primarily attributed to the disequilibrium compaction of mudstone, because the disequilibrium compaction of mudstone accounts for over 90% of the pressure in sandstone. Furthermore, the overpressure system in this area is not singular but comprises multiple nested relative fluid trapping containers. The application of nested fluid trapping container theory allows for an estimation of the overpressure’s formation time, although further validation of these estimates is required. It should be noted that the method proposed in this paper is particularly suited for sedimentary basins with relatively weak tectonic activity.</p>","PeriodicalId":16723,"journal":{"name":"Journal of Petroleum Exploration and Production Technology","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140883472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A new workflow for warning and controlling the water invasion 预警和控制水入侵的新工作流程
IF 2.2 4区 工程技术
Journal of Petroleum Exploration and Production Technology Pub Date : 2024-04-27 DOI: 10.1007/s13202-024-01812-9
Peijun Zhang, Hairun Fan, Guangyao Wen, Lingyu Mu, Weiheng Cheng, Xiaochen Wang, Chengwu Gao, Xinglin Gong, Xurong Zhao
{"title":"A new workflow for warning and controlling the water invasion","authors":"Peijun Zhang, Hairun Fan, Guangyao Wen, Lingyu Mu, Weiheng Cheng, Xiaochen Wang, Chengwu Gao, Xinglin Gong, Xurong Zhao","doi":"10.1007/s13202-024-01812-9","DOIUrl":"https://doi.org/10.1007/s13202-024-01812-9","url":null,"abstract":"<p>Warning and controlling the water invasion in water-driving reservoirs is significant because water invasion will seriously hamper well productivity and gas recovery. Unfortunately, there are few comprehensive methods to control water invasion. First, we establish and verify a water invasion model of reservoir scale. Then, a new workflow for warning and controlling the water invasion is proposed using the numerical simulation method. The workflow first judges the water invasion characteristics, determines the water invasion index based on the production data, and then controls the water invasion by finding and closing the perforation layer of serious water production. Finally, the optimal water control scheme is obtained by comparing water and gas production. The results show that the accuracy of the geological reserves of the established water invasion model is 99% and has a good pressure fitting result. The early warning chart for the gas reservoir in the west of Amu Darya B area is drawn, including the early warning pressure and the level 1, level 2, and level 3 early warning water–gas ratio, which is convenient for field application. For the water-driving wells west of area B, the early warning value of the water–gas ratio increases with the increase of gas production rate during fixed production and decreases with the increase of bottom hole pressure during constant pressure production. Closing the harmful perforation from the water-finding study will significantly reduce the water while retaining the gas production. After water control technology, water production decreased by 90.9%, while gas production decreased by only 9.7%.</p>","PeriodicalId":16723,"journal":{"name":"Journal of Petroleum Exploration and Production Technology","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140883479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信