地热储层热量提取强化地热系统中的多场耦合数值模拟

IF 2.4 4区 工程技术 Q3 ENERGY & FUELS
Zhi Zeng, Weijun Shen, Mingcang Wang, Zhiyu Li, Xiangyang Wang, Jianghui Ding
{"title":"地热储层热量提取强化地热系统中的多场耦合数值模拟","authors":"Zhi Zeng, Weijun Shen, Mingcang Wang, Zhiyu Li, Xiangyang Wang, Jianghui Ding","doi":"10.1007/s13202-024-01775-x","DOIUrl":null,"url":null,"abstract":"<p>The coupled analysis of multi-field heat and mass transfer in geothermal reservoirs is a pivotal concern within the realm of geothermal rock exploitation. It holds significant implications for the assessment of thermal energy capacity and the formulation of reservoir optimization strategies in the context of geothermal rock resources. Parameters governing production, along with fracture network characteristics (such as injection well temperature, injection well pressure, fracture width, and fracture network density), exert an influence on enhanced geothermal systems (EGS) heat production. In this study, aiming to comprehend the dynamic heat generation of EGS during prolonged exploitation, a coupling of various fields including permeation within the rock formations of geothermal reservoirs and the deformation of these rocks was achieved. In this study, we formulated the governing equations for the temperature field, stress field, and permeability field within the geothermal reservoir rock. Subsequently, we conducted numerical simulations to investigate the heat transfer process in an enhanced geothermal system. We analyzed the effects of injection well temperature, injection well pressure, primary fracture width, and secondary fracture density on the temperature distribution within the reservoir and the thermal power output of the production well. The research findings underscore that ill-conceived exploitation schemes markedly accelerate the thermal breakthrough rate of production wells, resulting in a diminished rate of geothermal resource extraction from the geothermal reservoir rock. Variations in influent well temperature and secondary fracture density exhibit an approximately linear impact on the output from production wells. Crucially, injection well pressure and primary fracture width emerge as pivotal factors influencing reservoir output response, with excessive widening of primary fractures leading to premature thermal breakthrough in production wells.</p>","PeriodicalId":16723,"journal":{"name":"Journal of Petroleum Exploration and Production Technology","volume":"17 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical simulation of multi-field coupling in geothermal reservoir heat extraction of enhanced geothermal systems\",\"authors\":\"Zhi Zeng, Weijun Shen, Mingcang Wang, Zhiyu Li, Xiangyang Wang, Jianghui Ding\",\"doi\":\"10.1007/s13202-024-01775-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The coupled analysis of multi-field heat and mass transfer in geothermal reservoirs is a pivotal concern within the realm of geothermal rock exploitation. It holds significant implications for the assessment of thermal energy capacity and the formulation of reservoir optimization strategies in the context of geothermal rock resources. Parameters governing production, along with fracture network characteristics (such as injection well temperature, injection well pressure, fracture width, and fracture network density), exert an influence on enhanced geothermal systems (EGS) heat production. In this study, aiming to comprehend the dynamic heat generation of EGS during prolonged exploitation, a coupling of various fields including permeation within the rock formations of geothermal reservoirs and the deformation of these rocks was achieved. In this study, we formulated the governing equations for the temperature field, stress field, and permeability field within the geothermal reservoir rock. Subsequently, we conducted numerical simulations to investigate the heat transfer process in an enhanced geothermal system. We analyzed the effects of injection well temperature, injection well pressure, primary fracture width, and secondary fracture density on the temperature distribution within the reservoir and the thermal power output of the production well. The research findings underscore that ill-conceived exploitation schemes markedly accelerate the thermal breakthrough rate of production wells, resulting in a diminished rate of geothermal resource extraction from the geothermal reservoir rock. Variations in influent well temperature and secondary fracture density exhibit an approximately linear impact on the output from production wells. Crucially, injection well pressure and primary fracture width emerge as pivotal factors influencing reservoir output response, with excessive widening of primary fractures leading to premature thermal breakthrough in production wells.</p>\",\"PeriodicalId\":16723,\"journal\":{\"name\":\"Journal of Petroleum Exploration and Production Technology\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Petroleum Exploration and Production Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13202-024-01775-x\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Petroleum Exploration and Production Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13202-024-01775-x","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

地热储层中的多场传热和传质耦合分析是地热岩石开发领域的一个关键问题。它对评估热能容量和制定地热岩石资源储层优化战略具有重要意义。生产参数以及裂缝网络特征(如注水井温度、注水井压力、裂缝宽度和裂缝网络密度)对增强地热系统(EGS)的产热量产生影响。本研究以理解 EGS 在长期开采过程中的动态产热为目标,将地热储层岩层内的渗透和这些岩石的变形等多个领域结合起来。在这项研究中,我们制定了地热储层岩石内部温度场、应力场和渗透场的控制方程。随后,我们进行了数值模拟,以研究增强地热系统中的传热过程。我们分析了注入井温度、注入井压力、一级裂缝宽度和二级裂缝密度对储层内温度分布和生产井热功率输出的影响。研究结果表明,考虑不周的开采方案会明显加快生产井的热突破速度,导致地热储层岩石的地热资源开采率降低。进水井温度和次级裂缝密度的变化对生产井的产出有近似线性的影响。最重要的是,注入井压力和原生裂缝宽度是影响储层产出反应的关键因素,原生裂缝的过度加宽会导致生产井过早发生热突破。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Numerical simulation of multi-field coupling in geothermal reservoir heat extraction of enhanced geothermal systems

Numerical simulation of multi-field coupling in geothermal reservoir heat extraction of enhanced geothermal systems

The coupled analysis of multi-field heat and mass transfer in geothermal reservoirs is a pivotal concern within the realm of geothermal rock exploitation. It holds significant implications for the assessment of thermal energy capacity and the formulation of reservoir optimization strategies in the context of geothermal rock resources. Parameters governing production, along with fracture network characteristics (such as injection well temperature, injection well pressure, fracture width, and fracture network density), exert an influence on enhanced geothermal systems (EGS) heat production. In this study, aiming to comprehend the dynamic heat generation of EGS during prolonged exploitation, a coupling of various fields including permeation within the rock formations of geothermal reservoirs and the deformation of these rocks was achieved. In this study, we formulated the governing equations for the temperature field, stress field, and permeability field within the geothermal reservoir rock. Subsequently, we conducted numerical simulations to investigate the heat transfer process in an enhanced geothermal system. We analyzed the effects of injection well temperature, injection well pressure, primary fracture width, and secondary fracture density on the temperature distribution within the reservoir and the thermal power output of the production well. The research findings underscore that ill-conceived exploitation schemes markedly accelerate the thermal breakthrough rate of production wells, resulting in a diminished rate of geothermal resource extraction from the geothermal reservoir rock. Variations in influent well temperature and secondary fracture density exhibit an approximately linear impact on the output from production wells. Crucially, injection well pressure and primary fracture width emerge as pivotal factors influencing reservoir output response, with excessive widening of primary fractures leading to premature thermal breakthrough in production wells.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
4.50%
发文量
151
审稿时长
13 weeks
期刊介绍: The Journal of Petroleum Exploration and Production Technology is an international open access journal that publishes original and review articles as well as book reviews on leading edge studies in the field of petroleum engineering, petroleum geology and exploration geophysics and the implementation of related technologies to the development and management of oil and gas reservoirs from their discovery through their entire production cycle. Focusing on: Reservoir characterization and modeling Unconventional oil and gas reservoirs Geophysics: Acquisition and near surface Geophysics Modeling and Imaging Geophysics: Interpretation Geophysics: Processing Production Engineering Formation Evaluation Reservoir Management Petroleum Geology Enhanced Recovery Geomechanics Drilling Completions The Journal of Petroleum Exploration and Production Technology is committed to upholding the integrity of the scientific record. As a member of the Committee on Publication Ethics (COPE) the journal will follow the COPE guidelines on how to deal with potential acts of misconduct. Authors should refrain from misrepresenting research results which could damage the trust in the journal and ultimately the entire scientific endeavor. Maintaining integrity of the research and its presentation can be achieved by following the rules of good scientific practice as detailed here: https://www.springer.com/us/editorial-policies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信