{"title":"Pharmacy, the continuously expanding field of science","authors":"P. Perjési","doi":"10.25082/jpbr.2021.01.003","DOIUrl":"https://doi.org/10.25082/jpbr.2021.01.003","url":null,"abstract":"Originating from the traditional herbal formulations, nowadays, Pharmacy covers all the disciplines focusing on the behavior of complex pharmaceutical forms, drug-releasing systems, and active compounds in the human body. Masters of pharmaceutical sciences must know the basics of pharmaceutical chemistry, pharmaceutical technology, biotechnology, biology, physiology, pharmacology, and toxicology.","PeriodicalId":16703,"journal":{"name":"Journal of Pharmaceutical and Biopharmaceutical Research","volume":"50 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81165595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comparative studies on enantioseparation of New Psychoactive Substances using cyclodextrin-assisted capillary electrophoresis with UV detection","authors":"Eva-Maria Hubner, Patrick Steinkellner, M. Schmid","doi":"10.25082/jpbr.2021.01.004","DOIUrl":"https://doi.org/10.25082/jpbr.2021.01.004","url":null,"abstract":"New psychoactive substances (NPS) count as psychoactive substances, which are slightly modified compared to illicit drugs regarding their chemical structure to circumvent law. Compared to classical drugs such as heroin, cocaine, or amphetamine, they show similar psychoactive effects, however, because of their novelty there is few knowledge about their side effects or toxicity. NPS are available as different chemical substance classes, among them chiral novel derivatives of amphetamine, cathinone, and ketamine. Since in most cases no clinical studies are available about the possibly different effects of the two enantiomers, there is a big demand for enantioseparation method development. Besides high-performance separation techniques such as gas chromatography or HPLC, capillary electrophoresis has turned out to be a powerful alternative for chiral separation development. The addition of chiral additives such as cyclodextrins to the background electrolyte often results in successful attempts. The present study compares the chiral separation power of different previously used non-charged ß-cyclodextrins, among them native ß-cyclodextrin as well as some of its derivatives such as acetyl-, and 2-hydroxypropyl-β-cyclodextrin, with the negatively charged derivatives carboxymethyl-, carboxyethyl- and succinyl-β-cyclodextrin by capillary zone electrophoresis. A total of 136 chiral NPS were investigated with these cyclodextrins, 122 of them were resolved in their enantiomers successfully by means of a simple electrolyte composition consisting of 10 mM aqueous sodium hydrogen phosphate buffer, pH 2.5 and 10 mM of the chiral selector. Furthermore, the presented method turned out to be useful to distinguish between positional isomers and examples for both enantiomer order and positional order for seized samples are given.","PeriodicalId":16703,"journal":{"name":"Journal of Pharmaceutical and Biopharmaceutical Research","volume":"44 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77228857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kaivon Assani, Amy T. Neidhard-Doll, Tarun Goswami
{"title":"Mechanical properties of nanoparticles in the drug delivery kinetics","authors":"Kaivon Assani, Amy T. Neidhard-Doll, Tarun Goswami","doi":"10.25082/jpbr.2022.01.002","DOIUrl":"https://doi.org/10.25082/jpbr.2022.01.002","url":null,"abstract":"Nanoparticle formulation is a recently developed drug delivery technology with enhanced targeting potential. Nanoparticles encapsulate the drug of choice and delivers it to the target via a targeting molecules (ex. antigen) located on the nanoparticle surface. Nanoparticles can even be targeted to deeply penetrating tissue and can be modeled to deliver drugs through the blood brain barrier. These advancements are providing better disease targeting such as to cancer and Alzheimer’s. Various polymers can be manufactured into nanoparticles. The polymers examined in this paper are polycaprolactone (PCL), poly(lactic acid) (PLA), poly(lactic-co-glycolic acid) (PLGA), and poly(glycolic acid) (PGA). The purpose of this study is to analyze the mechanical properties of these polymers to establish drug delivery trends and model pharmacokinetics and biotransport. We found that, in general, as the melting point, elastic modulus and tensile strength increases, the degradation rate also increases. PLA composite material may be an ideal polymer for drug delivery due to its good control of degradation.","PeriodicalId":16703,"journal":{"name":"Journal of Pharmaceutical and Biopharmaceutical Research","volume":"284 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81307070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"P22077 enhances the antitumor efficacy of Cisplatin and its mechanism","authors":"Jiahao Qiu, Qianwen Ren, Yingjie Wang, Qunling Xie, Yanjie Liu, P. Yu, Hongbo Wang, Jingwei Tian","doi":"10.25082/jpbr.2021.02.002","DOIUrl":"https://doi.org/10.25082/jpbr.2021.02.002","url":null,"abstract":"Activation of DNA damage repair pathways in tumor cells may reduce the treatment efficacy of platinum-based chemotherapeutic agents. Ubiquitin-specific protease 7 (USP7) is one of the deubiquitinating enzymes that can remove the ubiquitin from target proteins and protect substrate proteins from degradation. Although ubiquitin-specific protease 7(USP7) is highly expressed in cervical cancer tissues and plays an important role in DNA damage repair, the role of USP7 inhibition in the antitumor efficacy of cisplatin remains unknown. This study explored the effects and mechanisms of a USP7 inhibitor P22077 on the anti-cervical cancer efficacy of cisplatin. In in vitro studies, P22077 and cisplatin both significantly reduced HeLa cell proliferation and colony formation, and the combination produced preferable effects. In in vivo xenograft tumor model, P22077 and cisplatin both demonstrated significant antitumor efficacy. The drug combination produced greater antitumor activity than the individual drug alone. Cisplatin evoked DNA damage repair-related molecules and P22077 tended to prevent this change. The drug combination produced higher cell death rate than the individual drug alone. Collectively, These results suggest that the USP7 inhibitor P22077 alone has significant antitumor efficacy and also can enhance the antitumor effects of cisplatin. The USP7 inhibitor P22077 combined with cisplatin may be an effective treatment strategy for cervical cancer.","PeriodicalId":16703,"journal":{"name":"Journal of Pharmaceutical and Biopharmaceutical Research","volume":"49 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91225008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
B. Krueger, Taylor L Frazier, Sheila Galbreath, Tarun Goswami
{"title":"Therapeutic efficacies of nano carriers and dissolution kinetics","authors":"B. Krueger, Taylor L Frazier, Sheila Galbreath, Tarun Goswami","doi":"10.25082/jpbr.2022.02.002","DOIUrl":"https://doi.org/10.25082/jpbr.2022.02.002","url":null,"abstract":"The drug dissolution behavior of poorly soluble medication such as doxorubicin has been conducted in this paper. Since the drug was fixed, different carriers used to deliver it and their dissolutions kinetics compiled from literature evaluated in this paper. Even though targeting of drugs is very important in drug delivery, it is not within the scope of this paper. However, functionalization of the carrier may provide this benefit, those constructs are included for comparison in terms of hybrid constructs. Dendrimer, micelles and hybrid constructs used in the delivery of doxorubicin compared in this paper with respect to carrier size and drug loading. Assuming that the dissolution follows a slow release, 40-50% of the drug in the phase I representing the sudden or the burst release, followed by a steady release of 50-60% of the drug in phase II, not all the carriers and their sizes exhibited this behavior. Carriers and hybrid constructs 38nm size were more effective where phase I and II was observed, however, as the size decreased to 34 nm or increased, dissolution kinetics with minimal release occurred meaning the carriers were too big to penetrate the vasculature permeability. Nano-carriers, dendrimers, micelle, hybrid dendrimers, and hybrid micelle were found to be effective with the carrier manufacturing, generation, polymer, molecular weight of the carrier and other parameters. The release rate of doxorubicin was found to be effective with dendrimers together with hybrid dendrimer exhibiting a bilinear kinetics. Micelles 20nm were more effective representing 60% of release in 10 hours followed by additional 25% in 35 hours exhibiting a bilinear behavior. Size greater than 20nm resulted in slow dissolution reaching less than 10 to 40% of drug. Several drugs exhibited multiple slopes in their dissolution kinetics when micelle was used. The therapeutic efficacy of hybrid micelle was superior to other nano-carriers.","PeriodicalId":16703,"journal":{"name":"Journal of Pharmaceutical and Biopharmaceutical Research","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79460494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
E. B. Nunes, Priscila Zei Melo, Jefté Barbosa, Jefferson Hollanda Véras, C. R. Silva
{"title":"In vitro and in vivo evaluation of genotoxicity, cytotoxicity, and protective effects of synthetic chalcones (E)-3-(4-chlorophenyl)-1-phenyl-2-propen-1-one (4-CL) and (E)-3-(3,4-dimethoxyphenyl)-1- phenyl-2-propen-1-one (DMF)","authors":"E. B. Nunes, Priscila Zei Melo, Jefté Barbosa, Jefferson Hollanda Véras, C. R. Silva","doi":"10.25082/jpbr.2021.01.005","DOIUrl":"https://doi.org/10.25082/jpbr.2021.01.005","url":null,"abstract":"The chalcones (E)-3-(4-chlorophenyl)-1-phenyl-2-propen-1-one (4-CL) and (E)-3-(3,4-dimethoxyphenyl)-1-phenyl-2 -propen-1-one (DMF) are versatile and easily synthesized into low-cost compounds that have a wide spectrum of biological activities. In this study, the cytotoxic, genotoxic and modulatory activities of 4-CL and DMF were evaluated using the Ames test and the mouse micronucleus assay. The results of the Ames test revealed that both chalcones did not show mutagenic activity in Salmonella typhimurium strains TA98 and TA100, and demonstrated significant antimutagenicity (p< 0.05) when co-administered with sodium azide (SA) in strain TA100. In the micronucleus assay, both showed a significant increase in the frequency of micronucleated polychromatic erythrocytes (MNPCE) at 24 h and 48 h, revealing a genotoxic effect. In the co-treatment with mitomycin C (MMC) there was a significant decrease (p< 0.05) in the frequency of MNPCE both in chalcones at 24h and in the less concentrated dose of DMF at 48h, demonstrating its antigenotoxic activity. 4-CL showed a significant decrease in the polychromatic/ normochromatic erythrocyte (PCE/ NCE) ratio at 24 and 48 h (p< 0.05), indicating cytotoxicity. However, 4-CL and DMF when co-administered with MMC showed a significant increase in the PCE/NCE ratio within 24 hours, demonstrating anticytotoxicity. Furthermore, a biphasic dose-response behavior was observed in both chalcones, 4-CL in the co-administration with SA, in the Ames Test and DMF in the co-treatment with MMC, at 48 hours of exposure, in the micronucleus assay. In this study, 4-CL and DMF showed genotoxic, cytotoxic, antigenotoxic, anticytotoxic and no mutagenic properties.","PeriodicalId":16703,"journal":{"name":"Journal of Pharmaceutical and Biopharmaceutical Research","volume":"43 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91527881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sujie Liu, X. Wang, Huan Gao, L. Ye, Jingwei Tian, G. Du
{"title":"Pharmacodynamics study of a new 5-HT2A receptor inverse agonist PCC03039","authors":"Sujie Liu, X. Wang, Huan Gao, L. Ye, Jingwei Tian, G. Du","doi":"10.25082/jpbr.2021.02.003","DOIUrl":"https://doi.org/10.25082/jpbr.2021.02.003","url":null,"abstract":"The purpose of this paper is to evaluate the pharmacodynamics of a new 5-HT2A receptor inverse agonist PCC03039 and provide data support for its druggability and clinical trial application. In the in vitro efficacy studies, the affinities of PCC03039 for 5-HT2A, 5-HT2B, and 5-HT2C receptors and the inverse agonistic and antagonistic activities of 5-HT2A receptors were detected; in the in vivo efficacy studies, the pharmacodynamic effects of PCC03039 on DOI-induced rat head-twitch model and MK-801-induced rat hyperlocomotion model were observed. The results of the studies showed that the affinities of PCC03039 for the 5-HT2 receptors were comparable to those of the marketed drug pimavanserin, however, the inverse agonistic and antagonistic activities of PCC03039 for the 5-HT2A receptor were significantly improved, with IC50 values of 2.11 nM and 1.33 nM, which were 20-fold and 21-fold higher than that of pimavanserin, respectively. PCC03039 could dose-dependently inhibit DOI-induced head-twitch and MK-801-induced hyperlocomotion in SD rats, and the pharmacodynamic effect was significantly better than pimavanserin at the equimolar dose. The above results show that PCC03039 has better pharmacodynamic activity in vitro and in vivo than pimavanserin, and has good druggability from the perspective of pharmacodynamics.","PeriodicalId":16703,"journal":{"name":"Journal of Pharmaceutical and Biopharmaceutical Research","volume":"5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84678908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sheila Galbreath, B. Krueger, Taylor L Frazier, Tarun Goswami
{"title":"Effectiveness of mesoporous bioglass in drug delivery","authors":"Sheila Galbreath, B. Krueger, Taylor L Frazier, Tarun Goswami","doi":"10.25082/jpbr.2022.01.004","DOIUrl":"https://doi.org/10.25082/jpbr.2022.01.004","url":null,"abstract":"Since the invention of bioactive glass 50 years ago, it has become a versatile material used in healthcare in a variety of applications and compositions. Bioactive glass has shown superior capabilities of drug delivery compared to traditional carriers. For example, time-released medications are less likely to reach toxic levels, while delivering a specific, therapeutic dose to a localized area. The objective of this paper is to investigate the properties and effectiveness of mesoporous bioglass (MBG) as a drug delivery carrier. A literature review of various polymer coated 45S5 Bioglass® loaded with vancomycin was analyzed to determine their drug release response. Since MBG continues to be a preferred carrier with numerous combinations; size, coating, doped with ions, medications, and other physical conditions, there is a need to understand more fully their effectiveness. For a given loading efficiency of 5-15% the burst release % for day 1 remained 15-30% for given surface area, pore volume and pore size of 3.5 to 5 nm. The mechanical properties summarized in this paper are compared with the drug release kinetics. In general, for a given fracture toughness and compressive strength, the ratio of Young’s modulus to bending strength around 250 determined poor apatite mineralization resulting in slow release. As this ratio increased the apatite mineralization and dissolution rate increased. Doping MBG with ions enhanced the drug efficacy to treat a particular condition, for example, silver. Polymer coated MBG exhibited slower dissolution rate than uncoated MBG. Dissolution time increased with the drug loading rate, drying time of the coating, multi-layer coats of drug and polymer for the drug studied in this paper to more than 50%.","PeriodicalId":16703,"journal":{"name":"Journal of Pharmaceutical and Biopharmaceutical Research","volume":"63 5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90739945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zachary E Brooks, Tushar Goswami, Amy T. Neidhard-Doll, Tarun Goswami
{"title":"Transdermal drug delivery systems: Analysis of adhesion failure","authors":"Zachary E Brooks, Tushar Goswami, Amy T. Neidhard-Doll, Tarun Goswami","doi":"10.25082/jpbr.2022.01.003","DOIUrl":"https://doi.org/10.25082/jpbr.2022.01.003","url":null,"abstract":"The most critical component of the TDDS is the adhesive, which is responsible for the safety, efficacy and quality of the patch. For drug delivery to successfully occur, the patch must adhere to the surface of the contact area. If a patch has inadequate adhesion, it is likely to fall off before the entire delivery period has been satisfied, leading to risks for the patient and others who may encounter the patch. Despite the critical concerns associated with the adhesive properties of the patches, the adhesion quality and failure mechanisms have not been fully studied. If certain molecules encounter the adhesive, it may cause irreversible altering of its chemical composition, which could render it unsuitable for transdermal applications. In many cases of TDDS failure, sweat is believed to be a culprit responsible for causing adhesive failure. The goal of this project is to investigate the chemical composition of the adhesive layer of a transdermal patch. The patch sample is a Sandoz Estradiol Transdermal System manufactured by Noven Pharmaceuticals, Inc., designed to deliver 0.1mg per day and contains 1.56mg of Estradiol USP, the active ingredient. By analyzing the chemical composition of a patch that has not been worn, versus a patch that has been worn, it may be possible to determine the chemical interaction that causes adhesive failure. Fourier Transform Infra-Red (FTIR) Spectroscopy (OPUS FTIR Spectrometer) was performed on an unused estradiol TDDS patch immediately after opening, and again after 24 hours in ambient air to investigate the potential for oxidation. The IR Spectrum was then analyzed, and the peaks were reviewed. The IR Spectra for the sample left out for 24 hours indicated lengthened peaks corresponding to C=O, C-O, and O-H, a decreased transmittance, and a wider bandwidth in those regions. Based on these results, it can be determined that oxidation does occur on a patch sample that is exposed to ambient air. In future works, additional patch samples will be collected and used for an extensive IR and UV analysis. By comparing the IR and UV Spectrum graphs of “used” patches that did not fail, with “failed” patches, it may be possible to identify a cause for premature patch failure related to sweat interactions.","PeriodicalId":16703,"journal":{"name":"Journal of Pharmaceutical and Biopharmaceutical Research","volume":"15 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77143866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nanoparticulate carriers for drug delivery","authors":"Samantha Lokelani Crossen, Tarun Goswami","doi":"10.25082/jpbr.2022.01.001","DOIUrl":"https://doi.org/10.25082/jpbr.2022.01.001","url":null,"abstract":"Drug delivery with nanoparticulate carriers is a new and upcoming research area that is making major changes within the pharmaceutical industry. Nanoparticulate carriers are discussed, particularly, engineered nanoparticulate carriers used as drug delivery systems for targeted delivery. Nanoparticulate carriers that are used for drug delivery systems include polymers, micelles, dendrimers, liposomes, ceramics, metals, and various forms of biological materials. The properties of these nanoparticulate carriers are very advantageous for targeted drug delivery and result in efficient drug accumulation at the targeted area of interest, reduced drug toxicity, reduced systemic side effects, and more efficient use of the drug overall. Nanoparticlulate carriers are effective in passing various biological impediments and have a relatively high cellular uptake compared to that of microparticulate carriers, which allows for the drug agent to reach a targeted cell or tissue. The use of nanoparticulate carriers for drug delivery results in a prolonged and sustained release of the drug which ultimately reduces the cost and amount of doses that need to be administered to the patient. Currently, there is extensive research of nanoparticles as drug delivery carriers for challenging disease treatment cases such as cancer, HIV, and diabetes.","PeriodicalId":16703,"journal":{"name":"Journal of Pharmaceutical and Biopharmaceutical Research","volume":"113 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84921855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}