Journal of Nano-and electronic Physics最新文献

筛选
英文 中文
Precision Chaotic Laser Generation 精密混沌激光产生
Journal of Nano-and electronic Physics Pub Date : 2023-01-01 DOI: 10.21272/jnep.15(2).02008
Yu. S. Kurskoy, O. Hnatenko
{"title":"Precision Chaotic Laser Generation","authors":"Yu. S. Kurskoy, O. Hnatenko","doi":"10.21272/jnep.15(2).02008","DOIUrl":"https://doi.org/10.21272/jnep.15(2).02008","url":null,"abstract":"","PeriodicalId":16654,"journal":{"name":"Journal of Nano-and electronic Physics","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68044714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Feeding Methods for a Circular Shaped Multiband Patch Antenna at 5G, X and Ku Band to Quantify their Effects on Antenna Characteristics 5G、X、Ku波段圆形贴片天线馈电方式对天线特性的影响
Journal of Nano-and electronic Physics Pub Date : 2023-01-01 DOI: 10.21272/jnep.15(3).03007
Nitasha Bisht, P. Malik, Sudipta Das
{"title":"Feeding Methods for a Circular Shaped Multiband Patch Antenna at 5G, X and Ku Band to Quantify their Effects on Antenna Characteristics","authors":"Nitasha Bisht, P. Malik, Sudipta Das","doi":"10.21272/jnep.15(3).03007","DOIUrl":"https://doi.org/10.21272/jnep.15(3).03007","url":null,"abstract":"The paper is a comparative analysis of coaxial feed and microstrip line feed for a slotted circular patch microstrip antenna. When various feeding techniques are used to increase impedance matching, the performance of several characteristic parameters, such as voltage standing wave ratio, radiation pattern, gain etc. are impacted. To determine the extent to which these variables are affected, a comparison study is conducted, and the results are provided in this work. With the help of High Frequency Structure Simulator (HFSS) 3D electromagnetic software the antenna is devised and simulated. The intended coaxial feed antenna resonates at 7.5 GHz, 12.5 GHz, and 15 GHz, with bandwidths of 1800, 720, and 360 MHz, respectively, and 5.63 dB as a peak gain. In contrast, the proposed micro-strip feed antenna resonates at 3.5, 7, 12.8, 15, 17.5 GHz with a bandwidth of 180, 450, 90, 1170, 2250 MHz and a peak gain of 6.57 dB. In terms of gain, bandwidth, and multiband characteristics, microstrip line feed has been shown to outperform coaxial probe feed. The antenna designed with dimension of 33.56  33.56 mm 2 . The substrate used for the designing of circular patch microstrip antenna is FR4. The novel features of the designed antenna include its multiband properties and increased bandwidth. The proposed antenna can be utilized efficiently in X, Ku and lower 5G band.","PeriodicalId":16654,"journal":{"name":"Journal of Nano-and electronic Physics","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68045897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vehicles Automatic Controller by using the Eye Gaze Sensor Application 车辆自动控制器使用眼睛注视传感器的应用
Journal of Nano-and electronic Physics Pub Date : 2023-01-01 DOI: 10.21272/jnep.15(3).03018
T. Karthika, S. Parasuraman, A. Manimaran, P. Geetha, Selciya Selvan, D. Kumutha
{"title":"Vehicles Automatic Controller by using the Eye Gaze Sensor Application","authors":"T. Karthika, S. Parasuraman, A. Manimaran, P. Geetha, Selciya Selvan, D. Kumutha","doi":"10.21272/jnep.15(3).03018","DOIUrl":"https://doi.org/10.21272/jnep.15(3).03018","url":null,"abstract":"Vehicle accidents have suddenly increased over the years, and several technologies are also being researched to prevent them. The above research work offers ways of an accident prevention system employing an eye blink sensor as well as an automated braking technique to make sure that when fatigue is detected and the driver doesn't respond to the buzzer's warning bell within the permitted time, the Vehicle comes to a slow stop. During the allocated time before circuit design, the vehicle's hazard, warning lights are turned on to warn other drivers, particularly those driving ahead. Thus, the results show that the eye blink sensor is used by the car's accident prevention system once the car has stopped. The Proteus software package and the C++ programming language were utilized to verify that the automated braking system is an effective method for reducing accidents caused by fatigued driving. The design and development of a car collision and accident prevention system, when drowsiness is identified using eye blink sensors is proposed in this research paper. This research work is essential because incorporating this technology into automobiles prevents accidents caused by driving when fatigued. This research work might be improved by more research to increase driver attention by employing wireless technology to inform other cars when the driver is tired rather than using the vehicle's danger warning lights","PeriodicalId":16654,"journal":{"name":"Journal of Nano-and electronic Physics","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68046208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Methods of Experimental Research of Broadband Piezoelectric Transducer for Medical Applications 医用宽带压电换能器的实验研究方法
Journal of Nano-and electronic Physics Pub Date : 2023-01-01 DOI: 10.21272/jnep.15(3).03029
S. A. Naida, T. Zheliaskova, A. V. Darchuk, N. Naida, A. Naida, H. A. Kliushnichenko
{"title":"Methods of Experimental Research of Broadband Piezoelectric Transducer for Medical Applications","authors":"S. A. Naida, T. Zheliaskova, A. V. Darchuk, N. Naida, A. Naida, H. A. Kliushnichenko","doi":"10.21272/jnep.15(3).03029","DOIUrl":"https://doi.org/10.21272/jnep.15(3).03029","url":null,"abstract":".","PeriodicalId":16654,"journal":{"name":"Journal of Nano-and electronic Physics","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68046263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrical Conductivity of Composite Materials Based on n-InSe and Thermally Expanded Graphite 基于n-InSe和热膨胀石墨的复合材料的导电性
Journal of Nano-and electronic Physics Pub Date : 2023-01-01 DOI: 10.21272/jnep.15(1).01002
V. Kaminskii, Z. Kovalyuk, V. B. Boledzyuk, P. Savitskii, V. I. Ivanov, M. V. Tovarnitskii
{"title":"Electrical Conductivity of Composite Materials Based on n-InSe and Thermally Expanded Graphite","authors":"V. Kaminskii, Z. Kovalyuk, V. B. Boledzyuk, P. Savitskii, V. I. Ivanov, M. V. Tovarnitskii","doi":"10.21272/jnep.15(1).01002","DOIUrl":"https://doi.org/10.21272/jnep.15(1).01002","url":null,"abstract":"","PeriodicalId":16654,"journal":{"name":"Journal of Nano-and electronic Physics","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68043777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-Performance Two-Dimensional Photonic Crystal Biosensor to Diagnose Malaria Infected RBCs 高性能二维光子晶体生物传感器诊断疟疾感染红细胞
Journal of Nano-and electronic Physics Pub Date : 2023-01-01 DOI: 10.21272/jnep.15(1).01008
H. Tayoub, A. Hocini, A. Harhouz
{"title":"High-Performance Two-Dimensional Photonic Crystal Biosensor to Diagnose Malaria Infected RBCs","authors":"H. Tayoub, A. Hocini, A. Harhouz","doi":"10.21272/jnep.15(1).01008","DOIUrl":"https://doi.org/10.21272/jnep.15(1).01008","url":null,"abstract":"","PeriodicalId":16654,"journal":{"name":"Journal of Nano-and electronic Physics","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68043956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Analysis of Silver Nanoparticles as Carriers of Drug Delivery System 纳米银作为药物递送系统载体的分析
Journal of Nano-and electronic Physics Pub Date : 2023-01-01 DOI: 10.21272/jnep.15(4).04015
A. B. Pawar, Sachin K. Korde, Dhananjay S. Rakshe, P. William, M. A. Jawale, Neeta Deshpande
{"title":"Analysis of Silver Nanoparticles as Carriers of Drug Delivery System","authors":"A. B. Pawar, Sachin K. Korde, Dhananjay S. Rakshe, P. William, M. A. Jawale, Neeta Deshpande","doi":"10.21272/jnep.15(4).04015","DOIUrl":"https://doi.org/10.21272/jnep.15(4).04015","url":null,"abstract":"Nanotechnology has advanced significantly over the last decade and has found several uses in fields as diverse as medical, pharmaceuticals, microelectronics, aerospace","PeriodicalId":16654,"journal":{"name":"Journal of Nano-and electronic Physics","volume":"13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135652262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Design of a UWB Coplanar Antenna with Step Graded Ground Plane for 5G and Modern Wireless Communication Applications 面向5G及现代无线通信应用的台阶渐变地平面超宽带共面天线设计
Journal of Nano-and electronic Physics Pub Date : 2023-01-01 DOI: 10.21272/jnep.15(4).04024
M. Bendaoued, A. Es-saleh, B. Nasiri, S. Lakrit, S. Das, R. Mandry, A. Faize
{"title":"Design of a UWB Coplanar Antenna with Step Graded Ground Plane for 5G and Modern Wireless Communication Applications","authors":"M. Bendaoued, A. Es-saleh, B. Nasiri, S. Lakrit, S. Das, R. Mandry, A. Faize","doi":"10.21272/jnep.15(4).04024","DOIUrl":"https://doi.org/10.21272/jnep.15(4).04024","url":null,"abstract":"This article covers a wideband coplanar rectangular patch antenna for 5G and wireless communication applications below 6 GHz. The proposed antenna design comprises of a rectangular CPW fed patch with a partial ground plane loaded with stair-case shaped slots. The simulated results demonstrate that the studied antenna has working band that ranges from 3 GHz to 6 GHz with | S 11 | ≤ 10 dB, covering the whole N77/N78/N79 band for 5G sub-6 GHz as well as several modern wireless communication systems including WiMAX, WLAN and long-term evolution (LTE). In addition, the various procedures can be utilized to design and match this antenna for additional frequency bands. The examined antenna displays steady bidirectional radiation patterns, high gain, and efficiency. The projected structure has an overall size of 31.84  26.06 mm 2 and it is designed with a cheap FR4 type substrate of 4.4 relative dielectric constant. The suggested antenna has a miniaturized dimensions and good electrical performances. The proposed antenna is developed and simulated using Computer Simulation Advanced Design System (ADS). It is of potential interests because of its symmetrical radiation behavior, tiny footprint, and planar form. The investigated antenna may be a prospective choice for usage in 5G for sub 6 GHz bands and current wireless communication systems due to its superior performance parameters.","PeriodicalId":16654,"journal":{"name":"Journal of Nano-and electronic Physics","volume":"86 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135698812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of Charge Plasma Based Hetero Junction Nanowire Multi Channel Field Effect Transistor for Sub 10 nm 10nm以下基于电荷等离子体的异质结纳米线多通道场效应晶体管分析
Journal of Nano-and electronic Physics Pub Date : 2023-01-01 DOI: 10.21272/jnep.15(4).04032
M. Balaji, S. Ashok Kumar
{"title":"Analysis of Charge Plasma Based Hetero Junction Nanowire Multi Channel Field Effect Transistor for Sub 10 nm","authors":"M. Balaji, S. Ashok Kumar","doi":"10.21272/jnep.15(4).04032","DOIUrl":"https://doi.org/10.21272/jnep.15(4).04032","url":null,"abstract":"This paper describes the design and development of a Nano Wire Multi Channel Field Effect Transistor (NWMCFET) with a gate length of 5 nm. The NWMCFET is created by splitting the Nanowire MCFET into four channels, and the charge plasma concept is employed during the design process using the Sentaurus TCAD simulation tool. To enhance the performance of the NWMCFET, Silicon Carbide (SiC) is utilized for the source and drain regions. The integration of SiC, combined with the utilization of a multi-bridge channel and the device's Ultra-Thin Body (UTB) technology, leads to an increased current drive capability. The Cur-rent-Voltage ( I-V ) characteristics of the device are plotted, and it is observed that these techniques result in a notable enhancement in current drive and overall performance. Additionally, the inclusion of hetero junction phenomena in the NWMCFET design further improves its performance. Consequently, the device incorporating the multi-channel and electrostatic doping idea demonstrates comparable results to manually doped devices. This finding highlights the potential of the proposed device design. Particularly, in the context of sub-10 nm devices, further development in this direction holds significant advantages. In summary, this paper presents a comprehensive exploration of a Nano Wire Multi Channel Field Effect Transistor design, utilizing the charge plasma concept, SiC material, and a multi-bridge channel configuration. The experimental results indicate improved current drive and overall device performance. Furthermore, the incorporation of hetero junction phenomena is found to be beneficial. The proposed design offers promising prospects for the development of sub-10 nm devices in the future.","PeriodicalId":16654,"journal":{"name":"Journal of Nano-and electronic Physics","volume":"104 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135698820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and Analysis of Properties MASnl3 Nanostructures Doped with Cu2O Cu2O掺杂MASnl3纳米结构的设计与性能分析
Journal of Nano-and electronic Physics Pub Date : 2023-01-01 DOI: 10.21272/jnep.15(4).04020
Ankit Mishra, Manoj Kumar Nigam
{"title":"Design and Analysis of Properties MASnl3 Nanostructures Doped with Cu2O","authors":"Ankit Mishra, Manoj Kumar Nigam","doi":"10.21272/jnep.15(4).04020","DOIUrl":"https://doi.org/10.21272/jnep.15(4).04020","url":null,"abstract":"presented at the 3 rd International Conference on Innovative Research in Renewable Energy Technologies (IRRET-2023","PeriodicalId":16654,"journal":{"name":"Journal of Nano-and electronic Physics","volume":"36 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135699309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信