{"title":"m6A-methylase METTL3 promotes retinal angiogenesis through modulation of metabolic reprogramming in RPE cells.","authors":"Qian Zhou, Xianyang Liu, Huiping Lu, Na Li, Jiayu Meng, Jiaxing Huang, Zhi Zhang, Jiangyi Liu, Wei Fan, Wanqian Li, Xingran Li, Xiaoyan Liu, Hangjia Zuo, Peizeng Yang, Shengping Hou","doi":"10.1186/s12974-024-03279-1","DOIUrl":"10.1186/s12974-024-03279-1","url":null,"abstract":"<p><p>Retinal neovascularization (RNV) disease is one of the leading causes of blindness, yet the molecular underpinnings of this condition are not well understood. To delve into the critical aspects of cell-mediated angiogenesis, we analyzed our previously published single-cell data. Our analysis revealed that retinal pigment epithelium (RPE) cells serve a crucial promotional function in angiogenesis. RPE cells were regulated by N6-methyladenosine (m6A). Next, we detected several critical m6A methylase in hypoxic ARPE-19 cells and in oxygen-induced retinopathy (OIR) mice, our results revealed a significant decrease in the level of methyltransferase like 3 (METTL3). METTL3 specific inhibitor STM2457 intravitreal injection or METTL3 conditional knockout mice both showed a significantly reduced neovascularization area of retina. Additionally, the angiogenesis-related abilities of human retinal endothelial cells (HRECs) were diminished after co-cultured with ARPE-19 treated with STM2457 or sh-METTL3 in vitro. Furthermore, through the integration of Methylated RNA immunoprecipitation (MeRIP) sequencing and RNA sequencing, we discovered that the metabolic enzyme quinolinate phosphoribosyltransferase (QPRT) was directly modified by METTL3 and recognized by the YTH N6-methyladenosine RNA binding protein C1 (YTHDC1). Moreover, after over-expressing QPRT, the angiogenic abilities of HRECs were improved through the phosphorylated phosphatidylinositol-3-kinase (p-PI3K)/ phosphorylated threonine kinase (p-AKT) pathway. Collectively, our study provided a novel therapeutic target for retinal angiogenesis.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":"21 1","pages":"289"},"PeriodicalIF":9.3,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11539582/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142589895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stefano Angiari, Tommaso Carlucci, Simona L Budui, Simone D Bach, Silvia Dusi, Julia Walter, Elena Ellmeier, Alyssa Schnabl, Anika Stracke, Natalie Bordag, Cansu Tafrali, Rina Demjaha, Michael Khalil, Gabriele Angelini, Eleonora Terrabuio, Enrica C Pietronigro, Elena Zenaro, Carlo Laudanna, Barbara Rossi, Gabriela Constantin
{"title":"Coenzyme A fueling with pantethine limits autoreactive T cell pathogenicity in experimental neuroinflammation.","authors":"Stefano Angiari, Tommaso Carlucci, Simona L Budui, Simone D Bach, Silvia Dusi, Julia Walter, Elena Ellmeier, Alyssa Schnabl, Anika Stracke, Natalie Bordag, Cansu Tafrali, Rina Demjaha, Michael Khalil, Gabriele Angelini, Eleonora Terrabuio, Enrica C Pietronigro, Elena Zenaro, Carlo Laudanna, Barbara Rossi, Gabriela Constantin","doi":"10.1186/s12974-024-03270-w","DOIUrl":"10.1186/s12974-024-03270-w","url":null,"abstract":"<p><strong>Background: </strong>Immune cell metabolism governs the outcome of immune responses and contributes to the development of autoimmunity by controlling lymphocyte pathogenic potential. In this study, we evaluated the metabolic profile of myelin-specific murine encephalitogenic T cells, to identify novel therapeutic targets for autoimmune neuroinflammation.</p><p><strong>Methods: </strong>We performed metabolomics analysis on actively-proliferating encephalitogenic T cells to study their overall metabolic profile in comparison to resting T cells. Metabolomics, phosphoproteomics, in vitro functional assays, and in vivo studies in experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis (MS), were then implemented to evaluate the effect of metabolic targeting on autoreactive T cell pathogenicity. Finally, we confirmed the translational potential of our targeting approach in human pro-inflammatory T helper cell subsets and in T cells from MS patients.</p><p><strong>Results: </strong>We found that autoreactive encephalitogenic T cells display an altered coenzyme A (CoA) synthesis pathway, compared to resting T cells. CoA fueling with the CoA precursor pantethine (PTTH) affected essential immune-related processes of myelin-specific T cells, such as cell proliferation, cytokine production, and cell adhesion, both in vitro and in vivo. Accordingly, pre-clinical treatment with PTTH before disease onset inhibited the development of EAE by limiting T cell pro-inflammatory potential in vivo. Importantly, PTTH also significantly ameliorated the disease course when administered after disease onset in a therapeutic setting. Finally, PTTH reduced pro-inflammatory cytokine production by human T helper 1 (Th1) and Th17 cells and by T cells from MS patients, confirming its translational potential.</p><p><strong>Conclusion: </strong>Our data demonstrate that CoA fueling with PTTH in pro-inflammatory and autoreactive T cells may represent a novel therapeutic approach for the treatment of autoimmune neuroinflammation.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":"21 1","pages":"287"},"PeriodicalIF":9.3,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11536535/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142583234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Christine Vazquez, Seble G Negatu, Carl D Bannerman, Sowmya Sriram, Guo-Li Ming, Kellie A Jurado
{"title":"Antiviral immunity within neural stem cells distinguishes Enterovirus-D68 strain differences in forebrain organoids.","authors":"Christine Vazquez, Seble G Negatu, Carl D Bannerman, Sowmya Sriram, Guo-Li Ming, Kellie A Jurado","doi":"10.1186/s12974-024-03275-5","DOIUrl":"10.1186/s12974-024-03275-5","url":null,"abstract":"<p><p>Neural stem cells have intact innate immune responses that protect them from virus infection and cell death. Yet, viruses can antagonize such responses to establish neuropathogenesis. Using a forebrain organoid model system at two developmental time points, we identified that neural stem cells, in particular radial glia, are basally primed to respond to virus infection by upregulating several antiviral interferon-stimulated genes. Infection of these organoids with a neuropathogenic Enterovirus-D68 strain, demonstrated the ability of this virus to impede immune activation by blocking interferon responses. Together, our data highlight immune gene signatures present in different types of neural stem cells and differential viral capacity to block neural-specific immune induction.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":"21 1","pages":"288"},"PeriodicalIF":9.3,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11539839/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142583233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Saskia Räuber, Andreas Schulte-Mecklenbeck, Alice Willison, Ramona Hagler, Marius Jonas, Duygu Pul, Lars Masanneck, Christina B Schroeter, Kristin S Golombeck, Stefanie Lichtenberg, Christine Strippel, Marco Gallus, Andre Dik, Ruth Kerkhoff, Sumanta Barman, Katharina J Weber, Stjepana Kovac, Melanie Korsen, Marc Pawlitzki, Norbert Goebels, Tobias Ruck, Catharina C Gross, Werner Paulus, Guido Reifenberger, Michael Hanke, Oliver Grauer, Marion Rapp, Michael Sabel, Heinz Wiendl, Sven G Meuth, Nico Melzer
{"title":"Flow cytometry identifies changes in peripheral and intrathecal lymphocyte patterns in CNS autoimmune disorders and primary CNS malignancies.","authors":"Saskia Räuber, Andreas Schulte-Mecklenbeck, Alice Willison, Ramona Hagler, Marius Jonas, Duygu Pul, Lars Masanneck, Christina B Schroeter, Kristin S Golombeck, Stefanie Lichtenberg, Christine Strippel, Marco Gallus, Andre Dik, Ruth Kerkhoff, Sumanta Barman, Katharina J Weber, Stjepana Kovac, Melanie Korsen, Marc Pawlitzki, Norbert Goebels, Tobias Ruck, Catharina C Gross, Werner Paulus, Guido Reifenberger, Michael Hanke, Oliver Grauer, Marion Rapp, Michael Sabel, Heinz Wiendl, Sven G Meuth, Nico Melzer","doi":"10.1186/s12974-024-03269-3","DOIUrl":"10.1186/s12974-024-03269-3","url":null,"abstract":"<p><strong>Background: </strong>Immune dysregulation is a hallmark of autoimmune diseases of the central nervous system (CNS), characterized by an excessive immune response, and primary CNS tumors (pCNS-tumors) showing a highly immunosuppressive parenchymal microenvironment.</p><p><strong>Methods: </strong>Aiming to provide novel insights into the pathogenesis of CNS autoimmunity and cerebral tumor immunity, we analyzed the peripheral blood (PB) and cerebrospinal fluid (CSF) of 81 autoimmune limbic encephalitis (ALE), 148 relapsing-remitting multiple sclerosis (RRMS), 33 IDH-wildtype glioma, 9 primary diffuse large B cell lymphoma of the CNS (CNS-DLBCL), and 110 controls by flow cytometry (FC). Additionally, an in-depth immunophenotyping of the PB from an independent cohort of 20 RRMS and 18 IDH-wildtype glioblastoma patients compared to 19 controls was performed by FC combined with unsupervised computational approaches.</p><p><strong>Results: </strong>We identified alterations in peripheral and intrathecal adaptive immunity, mainly affecting the T cell (Tc) but also the B cell (Bc) compartment in ALE, RRMS, and pCNS-tumors compared to controls. ALE, RRMS, and pCNS-tumors featured higher expression of the T cell activation marker HLA-DR, which was even more pronounced in pCNS-tumors than in ALE or RRMS. Glioblastoma patients showed signs of T cell exhaustion that were not visible in RRMS patients. In-depth characterization of the PB revealed differences mainly in the T effector and memory compartment between RRMS and glioblastoma patients and similar alterations in the Bc compartment, including atypical Bc, CD19<sup>+</sup>CD20<sup>-</sup> double negative Bc, and plasma cells. PB and CSF mFC together with CSF routine parameters could reliably differentiate ALE and RRMS from pCNS-tumors facilitating early diagnosis and treatment.</p><p><strong>Conclusions: </strong>ALE, RRMS, and pCNS-tumors show distinct but partially overlapping changes mainly in HLA-DR<sup>+</sup> Tc, memory Tc, exhausted Tc, and Bc subsets providing insights into disease pathogenesis. Moreover, mFC shows diagnostic potential facilitating early diagnosis and treatment.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":"21 1","pages":"286"},"PeriodicalIF":9.3,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11536547/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142576145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Peter M Andrew, Jeremy A MacMahon, Pedro N Bernardino, Yi-Hua Tsai, Brad A Hobson, Valerie A Porter, Sydney L Huddleston, Audrey S Luo, Donald A Bruun, Naomi H Saito, Danielle J Harvey, Amy Brooks-Kayal, Abhijit J Chaudhari, Pamela J Lein
{"title":"Shifts in the spatiotemporal profile of inflammatory phenotypes of innate immune cells in the rat brain following acute intoxication with the organophosphate diisopropylfluorophosphate.","authors":"Peter M Andrew, Jeremy A MacMahon, Pedro N Bernardino, Yi-Hua Tsai, Brad A Hobson, Valerie A Porter, Sydney L Huddleston, Audrey S Luo, Donald A Bruun, Naomi H Saito, Danielle J Harvey, Amy Brooks-Kayal, Abhijit J Chaudhari, Pamela J Lein","doi":"10.1186/s12974-024-03272-8","DOIUrl":"10.1186/s12974-024-03272-8","url":null,"abstract":"<p><p>Acute intoxication with cholinesterase inhibiting organophosphates (OP) can produce life-threatening cholinergic crisis and status epilepticus (SE). Survivors often develop long-term neurological consequences, including spontaneous recurrent seizures (SRS) and impaired cognition. Numerous studies implicate OP-induced neuroinflammation as a pathogenic mechanism contributing to these chronic sequelae; however, little is known about the inflammatory phenotype of innate immune cells in the brain following acute OP intoxication. Thus, the aim of this study was to characterize the natural history of microglial and astrocytic inflammatory phenotypes following acute intoxication with the OP, diisopropylfluorophosphate (DFP). Adult male and female Sprague-Dawley rats were administered a single dose of DFP (4 mg/kg, sc) followed by standard medical countermeasures. Within minutes, animals developed benzodiazepine-resistant SE as determined by monitoring seizures using a modified Racine scale. At 1, 3, 7, 14, and 28 d post-exposure (DPE), neuroinflammation was assessed using translocator protein (TSPO) positron emission tomography (PET) and magnetic resonance imaging (MRI). In both sexes, we observed consistently elevated radiotracer uptake across all examined brain regions and time points. A separate group of animals was euthanized at these same time points to collect tissues for immunohistochemical analyses. Colocalization of IBA-1, a marker for microglia, with iNOS or Arg1 was used to identify pro- and anti-inflammatory microglia, respectively; colocalization of GFAP, a marker for astrocytes, with C3 or S100A10, pro- and anti-inflammatory astrocytes, respectively. We observed shifts in the inflammatory profiles of microglia and astrocyte populations during the first month post-intoxication, largely in hyperintense inflammatory lesions in the piriform cortex and amygdala regions. In these areas, iNOS<sup>+</sup> proinflammatory microglial cell density peaked at 3 and 7 DPE, while anti-inflammatory Arg1<sup>+</sup> microglia cell density peaked at 14 DPE. Pro- and anti-inflammatory astrocytes emerged within 7 DPE, and roughly equal ratios of C3<sup>+</sup> pro-inflammatory and S100A10<sup>+</sup> anti-inflammatory astrocytes persisted at 28 DPE. In summary, microglia and astrocytes adopted mixed inflammatory phenotypes post-OP intoxication, which evolved over one month post exposure. These activated cell populations were most prominent in the piriform and amygdala areas and were more abundant in males compared to females. The temporal relationship between microglial and astrocytic responses suggests that initial microglial activity may influence delayed, persistent astrocytic responses. Further, our findings identify putative windows for inhibition of OP-induced neuroinflammatory responses in both sexes to evaluate the therapeutic benefit of anti-inflammation in this context.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":"21 1","pages":"285"},"PeriodicalIF":9.3,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11533402/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142576159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hannah A Staley, Janna E Jernigan, MacKenzie L Bolen, Ann M Titus, Noelle Neighbarger, Cassandra Cole, Kelly B Menees, Rebecca L Wallings, Malú Gámez Tansey
{"title":"Alzheimer's disease-associated protective variant Plcg2-P522R modulates peripheral macrophage function in a sex-dimorphic manner.","authors":"Hannah A Staley, Janna E Jernigan, MacKenzie L Bolen, Ann M Titus, Noelle Neighbarger, Cassandra Cole, Kelly B Menees, Rebecca L Wallings, Malú Gámez Tansey","doi":"10.1186/s12974-024-03271-9","DOIUrl":"10.1186/s12974-024-03271-9","url":null,"abstract":"<p><p>Genome-wide association studies have identified a protective mutation in the phospholipase C gamma 2 (PLCG2) gene which confers protection against Alzheimer's disease (AD)-associated cognitive decline. Therefore, PLCG2, which is primarily expressed in immune cells, has become a target of interest for potential therapeutic intervention. The protective allele, known as P522R, has been shown to be hyper-morphic in microglia, increasing phagocytosis of amyloid-beta (Aβ), and increasing the release of inflammatory cytokines. However, the effect of this protective mutation on peripheral tissue-resident macrophages, and the extent to which sex modifies this effect, has yet to be assessed. Herein, we show that peripheral macrophages carrying the P522R mutation do indeed show functional differences compared to their wild-type (WT) counterparts, however, these alterations occur in a sex-dependent manner. In macrophages from females, the P522R mutation increases lysosomal protease activity, cytokine secretion, and gene expression associated with cytokine secretion and apoptosis. In contrast, in macrophages from males, the mutation causes decreased phagocytosis and lysosomal protease activity, modest increases in cytokine secretion, and induction of gene expression associated with negative regulation of the immune response. Taken together, these results suggest that the mutation may be conferring different effects dependent on sex and cell type, and highlight the importance of considering sex as a biological variable when assessing the effects of genetic variants and implications for potential immune system-targeted therapies.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":"21 1","pages":"280"},"PeriodicalIF":9.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11529260/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142564419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alexander Kai Thomsen, Maria Abildgaard Steffensen, Jenni Martinez Villarruel Hinnerskov, Amalie Thomsen Nielsen, Henrik Vorum, Bent Honoré, Mogens Holst Nissen, Torben Lykke Sørensen
{"title":"Complement proteins and complement regulatory proteins are associated with age-related macular degeneration stage and treatment response.","authors":"Alexander Kai Thomsen, Maria Abildgaard Steffensen, Jenni Martinez Villarruel Hinnerskov, Amalie Thomsen Nielsen, Henrik Vorum, Bent Honoré, Mogens Holst Nissen, Torben Lykke Sørensen","doi":"10.1186/s12974-024-03273-7","DOIUrl":"10.1186/s12974-024-03273-7","url":null,"abstract":"<p><strong>Background: </strong>Dysregulation of the complement system is involved in development of age-related macular degeneration (AMD). The complement cascade is regulated by membrane bound complement regulatory proteins (Cregs) on mononuclear leukocytes among others. This study aims to investigate systemic complement proteins and Cregs in AMD stages and their association with treatment response in neovascular AMD (nAMD).</p><p><strong>Methods: </strong>In this clinical prospective study, treatment-naïve patients with nAMD, intermediate AMD (iAMD) and healthy controls were recruited and systemic complement proteins C3, C3a and C5a were investigated with electrochemiluminescence immunoassays, and Creg expression (CD35, CD46 and CD59) on T cells (CD4 + and CD8+) and monocytes (classical, intermediate and non-classical) investigated with flow cytometry. Treatment response in nAMD patients was evaluated after loading dose and after one year, and categorized as good, partial or poor. Complement proteins and Creg expression levels were compared between healthy controls, iAMD and nAMD, as well as between good, partial and poor nAMD treatment response groups. Polymorphisms in the CFH and ARMS2 genes were analyzed and compared to complement proteins and Creg expression levels in nAMD patients.</p><p><strong>Results: </strong>One hundred patients with nAMD, 34 patients with iAMD and 61 healthy controls were included. 94 nAMD patients completed the 1-year follow-up. Distribution of treatment response in nAMD was 61 (65%) good, 26 (28%) partial, and 7 (7%) poor responders. The distribution of 1-year treatment response was 50 (53%) good, 33 (36%) partial, and 11 (11%) poor responders. The concentrations of systemic C3, C3a, and the C3a/C3-ratio were significantly increased in patients with nAMD compared to healthy controls (P < 0.001, P = 0.002, and P = 0.035, respectively). Systemic C3 was also increased in iAMD compared to healthy controls (P = 0.031). The proportion of CD46 + CD4 + T cells and CD59 + intermediate monocytes were significantly decreased in patients with nAMD compared to healthy controls (P = 0.018 and P = 0.042, respectively). The post-loading dose partial treatment response group had significantly lower concentrations of C3a and C5a compared to the good response group (P = 0.005 and P = 0.042, respectively). The proportion of CD35 + monocytes was significantly lower in the 1-year partial response group compared to the 1-year good response group (P = 0.039). High-risk CFH genotypes in nAMD patients was associated with increased C3a, C3a/C3-ratio, and expression levels of CD35 + CD8 + T cells and CD46 + classical monocytes, while expression level of CD46 + non-classical monocytes was decreased.</p><p><strong>Conclusion: </strong>Elevated concentrations of systemic complement proteins were found in patients with iAMD and nAMD. Decreased Creg expression levels were found in patients with nAMD. Partially responding nAMD patients had a dysre","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":"21 1","pages":"284"},"PeriodicalIF":9.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11531117/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142564422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Min Liu, Jirong Pan, Xiaomeng Li, Xueling Zhang, Fan Tian, Mingfeng Li, Xinghan Wu, Ling Zhang, Chuan Qin
{"title":"Interleukin-6 deficiency reduces neuroinflammation by inhibiting the STAT3-cGAS-STING pathway in Alzheimer's disease mice.","authors":"Min Liu, Jirong Pan, Xiaomeng Li, Xueling Zhang, Fan Tian, Mingfeng Li, Xinghan Wu, Ling Zhang, Chuan Qin","doi":"10.1186/s12974-024-03277-3","DOIUrl":"10.1186/s12974-024-03277-3","url":null,"abstract":"<p><strong>Background: </strong>The Interleukin-6 (IL-6)-signal transducer and activator of transcription 3 (STAT3) pathway, along with the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway, are critical contributors to neuroinflammation in Alzheimer's disease (AD). Although previous research outside the context of AD has indicated that the IL-6-STAT3 pathway may regulate the cGAS-STING pathway, the exact molecular mechanisms through which IL-6-STAT3 influences cGAS-STING in AD are still not well understood.</p><p><strong>Methods: </strong>The activation of the IL-6-STAT3 and cGAS-STING pathways in the hippocampus of 5×FAD and WT mice was analyzed using WB and qRT-PCR. To explore the effects of IL-6 deficiency, Il6<sup>+/-</sup> mice were crossed with 5×FAD mice, and the subsequent impact on hippocampal STAT3 pathway activity, cGAS-STING pathway activation, amyloid pathology, neuroinflammation, and cognitive function was evaluated through WB, qRT-PCR, immunohistochemistry, ThS staining, ELISA, and behavioral tests. The regulatory role of STAT3 in the transcription of the Cgas and Sting genes was further validated using ChIP-seq and ChIP-qPCR on hippocampal tissue from 5×FAD and Il6<sup>-/-</sup>: 5×FAD mice. Additionally, in the BV2 microglial cell line, the impact of STAT3 activation on the transcriptional regulation of Cgas and Sting genes, as well as the production of inflammatory mediators, was examined through WB and qRT-PCR.</p><p><strong>Results: </strong>We observed marked activation of the IL-6-STAT3 and cGAS-STING pathways in the hippocampus of AD mice, which was attenuated in the absence of IL-6. IL-6 deficiency reduced beta-amyloid deposition and neuroinflammation in the hippocampus of AD mice, contributing to cognitive improvements. Further analysis revealed that STAT3 directly regulates the transcription of both the Cgas and Sting genes. These findings suggest a potential mechanism involving the STAT3-cGAS-STING pathway, wherein IL-6 deficiency mitigates neuroinflammation in AD mice by modulating this pathway.</p><p><strong>Conclusion: </strong>These findings indicate that the STAT3-cGAS-STING pathway is critical in mediating neuroinflammation associated with AD and may represent a potential therapeutic target for modulating this inflammatory process in AD.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":"21 1","pages":"282"},"PeriodicalIF":9.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11529443/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142564425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sofia Jimenez-Sanchez, Rebekah Maksoud, Natalie Eaton-Fitch, Sonya Marshall-Gradisnik, Simon A Broadley
{"title":"The role of alemtuzumab in the development of secondary autoimmunity in multiple Sclerosis: a systematic review.","authors":"Sofia Jimenez-Sanchez, Rebekah Maksoud, Natalie Eaton-Fitch, Sonya Marshall-Gradisnik, Simon A Broadley","doi":"10.1186/s12974-024-03263-9","DOIUrl":"10.1186/s12974-024-03263-9","url":null,"abstract":"<p><strong>Background: </strong>Secondary autoimmune disease (SAID) in the context of alemtuzumab treatment is one of the main safety concerns that may arise following administration in people with multiple sclerosis (pwMS). Contributing factors underlying this adverse event are not well understood. The purpose of this systematic review was to appraise the literature investigating the role of alemtuzumab in the development of SAID in pwMS following treatment and identify potential biomarkers/ risk factors that may be predictive of onset of this manifestation.</p><p><strong>Methods: </strong>Relevant publications were retrieved from PubMed, Embase, and Web of Science using a three-pronged search strategy containing the following keywords: \"multiple sclerosis\"; \"alemtuzumab\"; and \"autoimmunity\". Studies that fulfilled the specified eligibility criteria and investigated SAID development after alemtuzumab in pwMS were included in the final analysis.</p><p><strong>Results: </strong>19 papers were included in the final review. Approximately, 47.92% of pwMS treated with alemtuzumab experienced SAID. A variety of biomarkers and risk factors were noted in the development of SAID, with a focus on immunological changes, including: increased homeostatic proliferation and T cell cycling, along with consistently elevated baseline serum IL-21 levels and thyroid autoantibodies. There was no significant association between known human leukocyte antigen (HLA) risk alleles, lymphocyte profile or dynamics and SAID development.</p><p><strong>Conclusions: </strong>While the mechanism underlying SAID following alemtuzumab is not fully understood, potential biomarkers and risk factors that may assist in elucidating mechanisms underlying this phenomenon have been documented in several independent studies. Following immunodepletion from alemtuzumab, an IL-21 driven increase in homeostatic proliferation and T cell cycling may disrupt tolerance mechanisms leading to an increase in the propensity toward alemtuzumab-induced autoimmunity. Further research is necessary to clarify the physiological changes after alemtuzumab therapy that trigger SAID in pwMS.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":"21 1","pages":"281"},"PeriodicalIF":9.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11528992/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142564505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sienna S Drake, Aliyah Zaman, Christine Gianfelice, Elizabeth M-L Hua, Kali Heale, Elia Afanasiev, Wendy Klement, Jo Anne Stratton, Alexandre Prat, Stephanie Zandee, Alyson E Fournier
{"title":"Senolytic treatment diminishes microglia and decreases severity of experimental autoimmune encephalomyelitis.","authors":"Sienna S Drake, Aliyah Zaman, Christine Gianfelice, Elizabeth M-L Hua, Kali Heale, Elia Afanasiev, Wendy Klement, Jo Anne Stratton, Alexandre Prat, Stephanie Zandee, Alyson E Fournier","doi":"10.1186/s12974-024-03278-2","DOIUrl":"10.1186/s12974-024-03278-2","url":null,"abstract":"<p><strong>Background: </strong>The role of senescence in disease contexts is complex, however there is considerable evidence that depletion of senescent cells improves outcomes in a variety of contexts particularly related to aging, cognition, and neurodegeneration. Much research has shown previously that inflammation can promote cellular senescence. Microglia are a central nervous system innate immune cell that undergo senescence with aging and during neurodegeneration. The contribution of senescent microglia to multiple sclerosis, an inflammatory neurodegenerative disease, is not clear, but microglia are strongly implicated in chronic active lesion pathology, tissue injury, and disease progression. Drugs that could specifically eliminate dysregulated microglia in multiple sclerosis are therefore of great interest to the field.</p><p><strong>Results: </strong>A single-cell analysis of brain tissue from mice subjected to experimental autoimmune encephalomyelitis (EAE), a mouse model of CNS inflammation that models aspects of multiple sclerosis (MS), identified microglia with a strong transcriptional signature of senescence including the presence of BCL2-family gene transcripts. Microglia expressing Bcl2l1 had higher expression of pro-inflammatory and senescence associated genes than their Bcl2l1 negative counterparts in EAE, suggesting they may exacerbate inflammation. Notably, in human single-nucleus sequencing from MS, BCL2L1 positive microglia were enriched in lesions with active inflammatory pathology, and likewise demonstrated increased expression of immune genes suggesting they may be proinflammatory and contribute to disease processes in chronic active lesions. Employing a small molecule BCL2-family inhibitor, Navitoclax (ABT-263), significantly reduced the presence of microglia and macrophages in the EAE spinal cord, suggesting that these cells can be targeted by senolytic treatment. ABT-263 treatment had a profound effect on EAE mice: decreasing motor symptom severity, improving visual acuity, promoting neuronal survival, and decreasing white matter inflammation.</p><p><strong>Conclusion: </strong>These results support the hypothesis that microglia and macrophages exhibit transcriptional features of cellular senescence in EAE and MS, and that microglia expressing Bcl2l1 demonstrate a proinflammatory signature that may exacerbate inflammation resulting in negative outcomes in neuroinflammatory disease. Depleting microglia and macrophages using a senolytic results in robust improvement in EAE disease severity, including across measures of neurodegeneration, inflammation, and demyelination, and may therefore represent a novel strategy to address disease progression in multiple sclerosis.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":"21 1","pages":"283"},"PeriodicalIF":9.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11529445/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142564436","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}