Journal of neurobiology最新文献

筛选
英文 中文
Spike-triggered dendritic calcium transients depend on synaptic activity in the cricket giant interneurons. 刺突触发的树突钙瞬态依赖于蟋蟀巨型中间神经元的突触活动。
Journal of neurobiology Pub Date : 2002-02-15 DOI: 10.1002/NEU.10032
H. Ogawa, Y. Baba, K. Oka
{"title":"Spike-triggered dendritic calcium transients depend on synaptic activity in the cricket giant interneurons.","authors":"H. Ogawa, Y. Baba, K. Oka","doi":"10.1002/NEU.10032","DOIUrl":"https://doi.org/10.1002/NEU.10032","url":null,"abstract":"The relationship between electrical activity and spike-induced Ca2+ increases in dendrites was investigated in the identified wind-sensitive giant interneurons in the cricket. We applied a high-speed Ca2+ imaging technique to the giant interneurons, and succeeded in recording the transient Ca2+ increases (Ca2+ transients) induced by a single action potential, which was evoked by presynaptic stimulus to the sensory neurons. The dendritic Ca2+ transients evoked by a pair of action potentials accumulated when spike intervals were shorter than 100 ms. The amplitude of the Ca2+ transients induced by a train of spikes depended on the number of action potentials. When stimulation pulses evoking the same numbers of action potentials were separately applied to the ipsi- or contra-lateral cercal sensory nerves, the dendritic Ca2+ transients induced by these presynaptic stimuli were different in their amplitude. Furthermore, the side of presynaptic stimulation that evoked larger Ca2+ transients depended on the location of the recorded dendritic regions. This result means that the spike-triggered Ca2+ transients in dendrites depend on postsynaptic activity. It is proposed that Ca2+ entry through voltage-dependent Ca2+ channels activated by the action potentials will be enhanced by excitatory synaptic inputs at the dendrites in the cricket giant interneurons.","PeriodicalId":16540,"journal":{"name":"Journal of neurobiology","volume":"89 1","pages":"234-44"},"PeriodicalIF":0.0,"publicationDate":"2002-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91041536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Neural cell differentiation from retinal pigment epithelial cells of the newt: an organ culture model for the urodele retinal regeneration. 蝾螈视网膜色素上皮细胞向神经细胞分化:一种鼠尾视网膜再生的器官培养模型。
Journal of neurobiology Pub Date : 2002-02-15 DOI: 10.1002/NEU.10031
Yoko Ikegami, Sanae Mitsuda, M. Araki
{"title":"Neural cell differentiation from retinal pigment epithelial cells of the newt: an organ culture model for the urodele retinal regeneration.","authors":"Yoko Ikegami, Sanae Mitsuda, M. Araki","doi":"10.1002/NEU.10031","DOIUrl":"https://doi.org/10.1002/NEU.10031","url":null,"abstract":"Transdifferentiation from retinal pigment epithelium (RPE) to neural retina (NR) was studied under a new culture system as an experimental model for newt retinal regeneration. Adult newt RPEs were organ cultured with surrounding connective tissues, such as the choroid and sclera, on a filter membrane. Around day 7 in vitro, lightly pigmented \"neuron-like cells\" with neuritic processes were found migrating out from the explant onto the filter membrane. Their number gradually increased day by day. BrdU-labeling study showed that RPE cells initiated to proliferate under the culture condition on day 4 in vitro, temporally correlating to the time course of retinal regeneration in vivo. Histological observations of cultured explants showed that proliferating RPE cells did not form the stratified structure typically observed in the NR but they rather migrated out from the explants. Neuronal differentiation was examined by immunohistochemical detection of various neuron-specific proteins; HPC-1 (syntaxin), GABA, serotonin, rhodopsin, and acetylated tubulin. Immunoreactive cells for these proteins always possessed fine and long neurite-like processes. Numerous lightly pigmented cells with neuron-like morphology showed HPC-1 immunoreactivity. Fibroblast growth factor-2 (FGF-2), known as a potent factor for the transdifferentiation of ocular tissues in various vertebrates, substantially increased the numbers of both neuron-like cells and HPC-1-like immunoreactive cells in a dose-dependent manner. These results indicate that our culture method ensures neural differentiation of newt RPE cells in vitro and provides, for the first time, a suitable in vitro experimental model system for studying tissue-intrinsic factors responsible for newt retinal regeneration.","PeriodicalId":16540,"journal":{"name":"Journal of neurobiology","volume":"10 1","pages":"209-20"},"PeriodicalIF":0.0,"publicationDate":"2002-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85293684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 50
Pharmacological evidence for GABAergic regulation of specific behaviors in Drosophila melanogaster. gaba能调节黑腹果蝇特定行为的药理学证据。
Journal of neurobiology Pub Date : 2002-02-15 DOI: 10.1002/NEU.10030
S. Leal, W. Neckameyer
{"title":"Pharmacological evidence for GABAergic regulation of specific behaviors in Drosophila melanogaster.","authors":"S. Leal, W. Neckameyer","doi":"10.1002/NEU.10030","DOIUrl":"https://doi.org/10.1002/NEU.10030","url":null,"abstract":"We have identified several GABAergic-modulated behaviors in Drosophila melanogaster by employing a pharmacological approach to disrupt GABA transporter function in vivo. Systemic treatment of adult female flies with the GABA transport inhibitors DL-2,4-diaminobutyric acid (DABA) or R,S-nipecotic acid (NipA), resulted in diminished locomotor activity, deficits in geotaxis, and the induction of convulsive behaviors with a secondary loss of the righting reflex. Pharmacological evidence suggested that the observed behavioral phenotypes were specific to disruption of GABA transporter function and GABAergic activity. The effects of GABA reuptake inhibitors on locomotor activity were dose dependent, pharmacologically distinct, and paralleled their known effects in mammalian systems. Recovery of normal locomotor activity and the righting reflex in DABA- and NipA-treated flies was achieved by coadministration of bicuculline (BIC), a GABA receptor antagonist that supresses GABAergic activity in mammals. Recovery of these behaviors was also achieved by coadministration of gabapentin, an anticonvulsant agent that interacts with mammalian GABAergic systems. Finally, behavioral effects were selective because other specific behaviors such as feeding activity and female sexual receptivity were not affected. Related pharmacological analyses performed in vitro on isolated Drosophila synaptic plasma membrane vesicles demonstrated high affinity, saturable uptake mechanisms for [3H]-GABA; further competitive inhibition studies with DABA and NipA demonstrated their ability to inhibit [3H]-GABA transport. The existence of experimentally accessible GABA transporters in Drosophila that share conserved pharmacological properties with their mammalian counterparts has resulted in the identification of specific behaviors that are modulated by GABA.","PeriodicalId":16540,"journal":{"name":"Journal of neurobiology","volume":"107 1","pages":"245-61"},"PeriodicalIF":0.0,"publicationDate":"2002-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86272039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 62
The function and the expression of forebrain GABA(A) receptors change with hormonal state in the adult mouse. 成年小鼠前脑GABA(A)受体的功能和表达随激素状态的变化而变化。
Journal of neurobiology Pub Date : 2002-02-05 DOI: 10.1002/NEU.10021
J. Jorge, K. McIntyre, L. Henderson
{"title":"The function and the expression of forebrain GABA(A) receptors change with hormonal state in the adult mouse.","authors":"J. Jorge, K. McIntyre, L. Henderson","doi":"10.1002/NEU.10021","DOIUrl":"https://doi.org/10.1002/NEU.10021","url":null,"abstract":"Neurotransmission mediated by gamma-aminobutyric acid type A (GABA(A)) receptors in the mammalian medial preoptic area (mPOA) plays a pivotal role in the expression of hormone-sensitive behaviors. Hand in hand with GABAergic control of reproduction, hormone treatments that activate gonadal steroid signaling pathways in gonadectomized rats are known to regulate the expression of specific GABA(A) receptor subunit mRNAs. While the effects of exogenous hormone treatments have been well documented, little information is available as to how GABA(A) receptor-mediated transmission in the mPOA is altered by endogenous changes in hormonal state in gonadally-intact adult animals or if those changes can be ascribed to hormone-dependent changes in receptor subunit composition. In the present study, we found that both the peak amplitudes of GABA(A) receptor-mediated synaptic currents in the mPOA, as well as the ability of the endogenous neurosteroids to modulate those currents, varied as a function of the estrous cycle. Moreover, we found that the degree of neurosteroid modulation was also significantly different between wild-type and the androgen-insensitive testicular feminization (Tfm) mutant male mice. Semiquantitative RT-PCR analysis performed to assess levels of GABA(A) receptor subunit mRNAs indicated that levels of specific subunits varied over the course of the estrous cycle and between wild-type and Tfm male mice. The variations in GABA(A) receptor expression and function in the mPOA that are associated with differences in gonadal steroid signaling may contribute to the dynamic nature of GABAergic control of neuroendocrine pathways.","PeriodicalId":16540,"journal":{"name":"Journal of neurobiology","volume":"13 4 1","pages":"137-49"},"PeriodicalIF":0.0,"publicationDate":"2002-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75168178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 37
Steps in the formation of a bipolar outgrowth pattern by cultured neurons, and their substrate dependence. 培养神经元形成双极生长模式的步骤及其对底物的依赖性。
Journal of neurobiology Pub Date : 2002-02-05 DOI: 10.1002/NEU.10017
F. F. De-Miguel, J. Vargas
{"title":"Steps in the formation of a bipolar outgrowth pattern by cultured neurons, and their substrate dependence.","authors":"F. F. De-Miguel, J. Vargas","doi":"10.1002/NEU.10017","DOIUrl":"https://doi.org/10.1002/NEU.10017","url":null,"abstract":"We studied the steps in the formation of the bipolar outgrowth pattern of cultured adult Anterior Pagoda (AP) neurons of the leech growing on a central nervous system (CNS) homogenate as substrate. This pattern, which consists of two primary neurites directed in opposite directions plus some bifurcations, resembles their embryonic pattern but is different from the patterns they develop in culture on leech laminin or Concanavalin A as substrates. In eight neurons that were studied, one primary neurite formed and branched several hours before the second one. Time-lapse video analysis showed that between 12 and 36 h of growth, the more proximal branch of the early neurite migrated retrogradely, rotated, and formed the second primary branch. Both neurites elongated until the total neurite length reached 130-160 microm, when the elongation of primary neurites became synchronous with the retraction of secondary processes, suggesting competition. The substrate dependence of these events was tested by plating AP neurons on leech laminin. On this substrate AP neurons produced multiple independent primary neurites with branches. Retraction of some large branches was followed by their regrowth, and did not correlate with the changes in other neurites. We propose that the dynamics in the formation of the bipolar outgrowth pattern of AP neurons arise from inhibitory extracellular matrix molecules, which reduce the synthesis of precursors for neurite formation.","PeriodicalId":16540,"journal":{"name":"Journal of neurobiology","volume":"54 1","pages":"106-17"},"PeriodicalIF":0.0,"publicationDate":"2002-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81474788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Survival of bundleless hair cells and subsequent bundle replacement in the bullfrog's saccule. 牛蛙囊内无束毛细胞的存活和随后的束替换。
Journal of neurobiology Pub Date : 2002-02-05 DOI: 10.1002/NEU.10002
J. Gale, J. R. Meyers, A. Periasamy, J. Corwin
{"title":"Survival of bundleless hair cells and subsequent bundle replacement in the bullfrog's saccule.","authors":"J. Gale, J. R. Meyers, A. Periasamy, J. Corwin","doi":"10.1002/NEU.10002","DOIUrl":"https://doi.org/10.1002/NEU.10002","url":null,"abstract":"Our senses of hearing and balance depend upon hair cells, the sensory receptors of the inner ear. Millions of people suffer from hearing and balance deficits caused by damage to hair cells as a result of exposure to noise, aminoglycoside antibiotics, and antitumor drugs. In some species such damage can be reversed through the production of new cells. This proliferative response is limited in mammals but it has been hypothesized that damaged hair cells might survive and undergo intracellular repair. We examined the fate of bullfrog saccular hair cells after exposure to a low dose of the aminoglycoside antibiotic gentamicin to determine whether hair cells could survive such treatment and subsequently be repaired. In organ cultures of the bullfrog saccule a combination of time-lapse video microscopy, two-photon microscopy, electron microscopy, and immunocytochemistry showed that hair cells can lose their hair bundle and survive as bundleless cells for at least 1 week. Time-lapse and electron microscopy revealed stages in the separation of the bundle from the cell body. Scanning electron microscopy (SEM) of cultures fixed 2, 4, and 7 days after antibiotic treatment showed that numerous new hair bundles were produced between 4 and 7 days of culture. Further examination revealed hair cells with small repaired hair bundles alongside damaged remnants of larger surviving bundles. The results indicate that sensory hair cells can undergo intracellular self-repair in the absence of mitosis, offering new possibilities for functional hair cell recovery and an explanation for non-proliferative recovery.","PeriodicalId":16540,"journal":{"name":"Journal of neurobiology","volume":"1 1","pages":"81-92"},"PeriodicalIF":0.0,"publicationDate":"2002-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89502412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 98
Regulated vnd expression is required for both neural and glial specification in Drosophila. 在果蝇中,vnd的表达调控是神经和胶质发育所必需的。
Journal of neurobiology Pub Date : 2002-02-05 DOI: 10.1002/NEU.10022
D. Mellerick, Vicky Modica
{"title":"Regulated vnd expression is required for both neural and glial specification in Drosophila.","authors":"D. Mellerick, Vicky Modica","doi":"10.1002/NEU.10022","DOIUrl":"https://doi.org/10.1002/NEU.10022","url":null,"abstract":"The Drosophila embryonic CNS arises from the neuroectoderm, which is divided along the dorsal-ventral axis into two halves by specialized mesectodermal cells at the ventral midline. The neuroectoderm is in turn divided into three longitudinal stripes--ventral, intermediate, and lateral. The ventral nervous system defective, or vnd, homeobox gene is expressed from cellularization throughout early neural development in ventral neuroectodermal cells, neuroblasts, and ganglion mother cells, and later in an unrelated pattern in neurons. Here, in the context of the dorsal-ventral location of precursor cells, we reassess the vnd loss- and gain-of-function CNS phenotypes using cell specific markers. We find that over expression of vnd causes significantly more profound effects on CNS cell specification than vnd loss. The CNS defects seen in vnd mutants are partly caused by loss of progeny of ventral neuroblasts-the commissures are fused and the longitudinal connectives are aberrantly positioned close to the ventral midline. The commissural vnd phenotype is associated with defects in cells that arise from the mesectoderm, where the VUM neurons have pathfinding defects, the MP1 neurons are mis-specified, and the midline glia are reduced in number. vnd over expression results in the mis-specification of progeny arising from all regions of the neuroectoderm, including the ventral neuroblasts that normally express the gene. The CNS of embryos that over express vnd is highly disrupted, with weak longitudinal connectives that are placed too far from the ventral midline and severely reduced commissural formation. The commissural defects seen in vnd gain-of-function mutants correlate with midline glial defects, whereas the mislocalization of interneurons coincides with longitudinal glial mis-specification. Thus, Drosophila neural and glial specification requires that vnd expression by tightly regulated.","PeriodicalId":16540,"journal":{"name":"Journal of neurobiology","volume":"13 1","pages":"118-36"},"PeriodicalIF":0.0,"publicationDate":"2002-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86625263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 22
The organization of synaptic vesicles at tonically transmitting connections of locust visual interneurons. 蝗虫视觉中间神经元张力传递连接突触囊泡的组织。
Journal of neurobiology Pub Date : 2002-02-05 DOI: 10.1002/NEU.10018
G. Leitinger, P. Simmons
{"title":"The organization of synaptic vesicles at tonically transmitting connections of locust visual interneurons.","authors":"G. Leitinger, P. Simmons","doi":"10.1002/NEU.10018","DOIUrl":"https://doi.org/10.1002/NEU.10018","url":null,"abstract":"Large, second-order neurons of locust ocelli, or L-neurons, make some output connections that transmit small changes in membrane potential and can sustain transmission tonically. The synaptic connections are made from the axons of L-neurons in the lateral ocellar tracts, and are characterized by bar-shaped presynaptic densities and densely packed clouds of vesicles near to the cell membrane. A cloud of vesicles can extend much of the length of this synaptic zone, and there is no border between the vesicles that are associated with neighboring presynaptic densities. In some axons, presynaptic densities are associated with discrete small clusters of vesicles. Up to 6% of the volume of a length of axon in a synaptic zone can be occupied with a vesicle cloud, packed with 4.5 to 5.5 thousand vesicles per microm(3). Presynaptic densities vary in length, from less than 70 nm to 1.5 microm, with shorter presynaptic densities being most frequent. The distribution of vesicles around short presynaptic densities was indistinguishable from that around long presynaptic densities, and vesicles were distributed in a similar way right along the length of a presynaptic density. Within the cytoplasm, vesicles are homogeneously distributed within a cloud. We found no differences in the distribution of vesicles in clouds between locusts that had been dark-adapted and locusts that had been light-adapted before fixation.","PeriodicalId":16540,"journal":{"name":"Journal of neurobiology","volume":"1 1","pages":"93-105"},"PeriodicalIF":0.0,"publicationDate":"2002-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80536903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 16
A neuronal inhibitory domain in the N-terminal half of agrin. agin n端一半的神经元抑制区域。
Journal of neurobiology Pub Date : 2002-02-05 DOI: 10.1002/NEU.10025
J. Bixby, Kristine Baerwald-de la Torre, Cong Wang, F. Rathjen, M. Rüegg
{"title":"A neuronal inhibitory domain in the N-terminal half of agrin.","authors":"J. Bixby, Kristine Baerwald-de la Torre, Cong Wang, F. Rathjen, M. Rüegg","doi":"10.1002/NEU.10025","DOIUrl":"https://doi.org/10.1002/NEU.10025","url":null,"abstract":"Agrin is required for appropriate pre- and postsynaptic differentiation of neuromuscular junctions. While agrin's ability to orchestrate postsynaptic differentiation is well documented, more recent experiments have suggested that agrin is also a \"stop signal\" for the presynaptic neuron, and that agrin has actions on neurons in the CNS. To elucidate the neuronal activities of agrin and to define the receptor(s) responsible for these functions, we have examined adhesions of neurons and their neurite-outgrowth responses to purified agrin in vitro. We find that both full-length agrin and the C-terminal 95 kDa of agrin (agrin c95), which is sufficient to induce postsynaptic differentiation, are adhesive for chick ciliary ganglion (CG) and forebrain neurons. Consistent with previous findings, our results show that N-CAM binds to full-length agrin, and suggest that alpha-dystroglycan is a neuronal receptor for agrin c95. In neurite outgrowth assays, full-length agrin inhibited both laminin- and N-cadherin-induced neurite growth from CG neurons. The N-terminal 150 kDa fragment of agrin, but not agrin c95, inhibited neurite outgrowth, indicating that domains in the N-terminal portion of agrin are sufficient for this function. Adhesion assays using protein-coated beads and agrin-expressing cells revealed differential interactions of agrin with members of the immunoglobulin superfamily of cell adhesion molecules. However, none of these, including N-CAM, appeared to be critical for neuronal adhesion. In summary, our results suggest that the N-terminal half of agrin is involved in agrin's ability to inhibit neurite outgrowth. Our results further suggest that neither alpha-dystroglycan nor N-CAM, two known binding proteins for agrin, mediate this effect.","PeriodicalId":16540,"journal":{"name":"Journal of neurobiology","volume":"206 1","pages":"164-79"},"PeriodicalIF":0.0,"publicationDate":"2002-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80445530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 46
Rare and spatially segregated release sites mediate a synaptic interaction between two identified network neurons. 罕见和空间分离的释放位点介导两个已确定的网络神经元之间的突触相互作用。
Journal of neurobiology Pub Date : 2002-02-05 DOI: 10.1002/NEU.10023
Marie-Jeanne Cabirol-Pol, D. Combes, V. Fénelon, J. Simmers, P. Meyrand
{"title":"Rare and spatially segregated release sites mediate a synaptic interaction between two identified network neurons.","authors":"Marie-Jeanne Cabirol-Pol, D. Combes, V. Fénelon, J. Simmers, P. Meyrand","doi":"10.1002/NEU.10023","DOIUrl":"https://doi.org/10.1002/NEU.10023","url":null,"abstract":"Laser-scanning confocal microscopy (LSCM), electron microcopy (EM), and cellular electrophysiology were used in combination to study the structural basis of an inhibitory synapse between two identified neurons of the same network. To achieve this, we examined the chemical inhibitory synapse between identified neurons belonging to the lobster (Homarus gammarus) pyloric network: the pyloric dilator (PD) and the lateral pyloric (LP) neurons. In order to visualize simultaneously these two neurons, we used intrasomatic injection of Lucifer Yellow (LY) in one and rhodamine/horseradish peroxydase (HRP) in the other. Under LSCM, we found only two zones of close apposition in a restricted part of the neuritic tree of the two network neurons. Then, within these two zones, the synaptic release sites were searched using EM. To this end, photoconversion of LY with immunogold and development of HRP with DAB were performed on the previously observed preparations. Structural evidence was found for only one release site per zone. To confirm this result, and because the zones of contact were always segregated in a restricted part of the dendrites, we used laser photoablation to selectively delete, either pre- or postsynaptically, the branches on which the release sites were located. In both cases, such restrictive ablation completely abolished the functional interaction between these neurons. Our results therefore demonstrate that an inhibitory synapse that is essential for the operation of a neural network relies on only very few sites of contact localized in a highly restricted part of each neuron's dendritic arbor.","PeriodicalId":16540,"journal":{"name":"Journal of neurobiology","volume":"1 1","pages":"150-63"},"PeriodicalIF":0.0,"publicationDate":"2002-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81191047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信