Journal of Non-Equilibrium Thermodynamics最新文献

筛选
英文 中文
Buoyancy driven convection with a Cattaneo flux model 采用卡塔尼奥通量模型的浮力驱动对流
IF 6.6 3区 工程技术
Journal of Non-Equilibrium Thermodynamics Pub Date : 2023-12-14 DOI: 10.1515/jnet-2023-0078
Brian Straughan, Vincenzo Tibullo, Francesca Passarella
{"title":"Buoyancy driven convection with a Cattaneo flux model","authors":"Brian Straughan, Vincenzo Tibullo, Francesca Passarella","doi":"10.1515/jnet-2023-0078","DOIUrl":"https://doi.org/10.1515/jnet-2023-0078","url":null,"abstract":"We review models for convective motion which have a flux law of Cattaneo type. This includes thermal convection where the heat flux law is a Cattaneo one. We additionally analyse models where the convective motion is due to a density gradient caused by a concentration of solute. The usual Fick’s law in this case is replaced by a Cattaneo one involving the flux of solute and the concentration gradient. Other effects such as rotation, the presence of a magnetic field, Guyer–Krumhansl terms, or Kelvin–Voigt theories are briefly introduced.","PeriodicalId":16428,"journal":{"name":"Journal of Non-Equilibrium Thermodynamics","volume":"39 1","pages":""},"PeriodicalIF":6.6,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138582570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Onsager-Casimir reciprocal relations as a consequence of the equivalence between irreversibility and dissipation 作为不可逆和耗散之间等价关系的结果的昂萨格-卡西米尔互易关系
IF 6.6 3区 工程技术
Journal of Non-Equilibrium Thermodynamics Pub Date : 2023-12-14 DOI: 10.1515/jnet-2023-0069
Václav Klika, Sylvain D. Bréchet
{"title":"Onsager-Casimir reciprocal relations as a consequence of the equivalence between irreversibility and dissipation","authors":"Václav Klika, Sylvain D. Bréchet","doi":"10.1515/jnet-2023-0069","DOIUrl":"https://doi.org/10.1515/jnet-2023-0069","url":null,"abstract":"The equivalence between irreversibility and dissipation entails that the Onsager reciprocal relations hold unconditionally, requiring the part of the phenomenological matrix describing dissipative phenomena to be symmetric. The antisymmetric part of the phenomenological matrix corresponds to the Casimir’s variant of the reciprocal relations and describes reversible phenomena. Further, we discuss the relationship of the reversibility and entropy production, including the role of the level of description, and we use the chemotaxis as an illustrative example.","PeriodicalId":16428,"journal":{"name":"Journal of Non-Equilibrium Thermodynamics","volume":"56 1","pages":""},"PeriodicalIF":6.6,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138635103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Relativistic hydrodynamics from the single-generator bracket formalism of nonequilibrium thermodynamics 从非平衡热力学的单发电机支架形式出发的相对论流体力学
IF 6.6 3区 工程技术
Journal of Non-Equilibrium Thermodynamics Pub Date : 2023-12-05 DOI: 10.1515/jnet-2023-0068
Vlasis G. Mavrantzas
{"title":"Relativistic hydrodynamics from the single-generator bracket formalism of nonequilibrium thermodynamics","authors":"Vlasis G. Mavrantzas","doi":"10.1515/jnet-2023-0068","DOIUrl":"https://doi.org/10.1515/jnet-2023-0068","url":null,"abstract":"We employ the generalized bracket formalism of nonequilibrium thermodynamics by Beris and Edwards to derive Lorentz-covariant time-evolution equations for an imperfect fluid with viscosity, dilatational viscosity, and thermal conductivity. Following closely the analysis presented by Öttinger (Physica A, 259, 1998, 24–42; Physica A, 254, 1998, 433–450) to the same problem but for the GENERIC formalism, we include in the set of hydrodynamic variables a covariant vector playing the role of a generalized thermal force and a covariant tensor closely related to the velocity gradient tensor. In our work here, we derive first the nonrelativistic equations and then we proceed to obtain the relativistic ones by elevating the thermal variable to a four-vector, the mechanical force variable to a four-by-four tensor, and by representing the Hamiltonian of the system with the time component of the energy-momentum tensor. For the Poisson and dissipation brackets we assume the same general structure as in the nonrelativistic case, but with the phenomenological coefficients in the dissipation bracket describing friction to heat and viscous effects being properly constrained for the resulting dynamic equations to be manifest Lorentz-covariant. The final relativistic equations are identical to those derived by Öttinger but the present approach seems to be more general in the sense that one could think of alternative forms of the phenomenological coefficients describing friction that could ensure Lorentz-covariance.","PeriodicalId":16428,"journal":{"name":"Journal of Non-Equilibrium Thermodynamics","volume":" 21","pages":""},"PeriodicalIF":6.6,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138492091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-objective optimization of an endoreversible closed Atkinson cycle 内可逆闭合Atkinson循环的多目标优化
IF 6.6 3区 工程技术
Journal of Non-Equilibrium Thermodynamics Pub Date : 2023-11-24 DOI: 10.1515/jnet-2023-0051
Zheng Gong, Yanlin Ge, Lingen Chen, Huijun Feng
{"title":"Multi-objective optimization of an endoreversible closed Atkinson cycle","authors":"Zheng Gong, Yanlin Ge, Lingen Chen, Huijun Feng","doi":"10.1515/jnet-2023-0051","DOIUrl":"https://doi.org/10.1515/jnet-2023-0051","url":null,"abstract":"Based on finite-time-thermodynamic theory and the model established in previous literature, the multi-objective optimization analysis for an endoreversible closed Atkinson cycle is conducted through using the NSGA-II algorithm. With the final state point temperature (<jats:italic>T</jats:italic> <jats:sub>2</jats:sub>) of cycle compression process as the optimization variable and the thermal efficiency (<jats:italic>η</jats:italic>), the dimensionless efficient power (<jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:msub> <m:mrow> <m:mover accent=\"true\"> <m:mrow> <m:mi>E</m:mi> </m:mrow> <m:mo>̄</m:mo> </m:mover> </m:mrow> <m:mrow> <m:mi>P</m:mi> </m:mrow> </m:msub> </m:math> <jats:tex-math> ${bar{E}}_{P}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jnetdy-2023-0051_ineq_001.png\" /> </jats:alternatives> </jats:inline-formula>), the dimensionless ecological function (<jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mrow> <m:mover accent=\"true\"> <m:mrow> <m:mi>E</m:mi> </m:mrow> <m:mo>̄</m:mo> </m:mover> </m:mrow> </m:math> <jats:tex-math> $bar{E}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jnetdy-2023-0051_ineq_002.png\" /> </jats:alternatives> </jats:inline-formula>) and the dimensionless power (<jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mrow> <m:mover accent=\"true\"> <m:mrow> <m:mi>P</m:mi> </m:mrow> <m:mo>̄</m:mo> </m:mover> </m:mrow> </m:math> <jats:tex-math> $bar{P}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jnetdy-2023-0051_ineq_003.png\" /> </jats:alternatives> </jats:inline-formula>) as the optimization objectives, the influences of <jats:italic>T</jats:italic> <jats:sub>2</jats:sub> on the four optimization objectives are analyzed, multi-objective optimization analyses of single-, two-, three- and four-objective are conducted, and the optimal cycle optimization objective combination is chosen by using three decision-making methods which include LINMAP, TOPSIS, and Shannon Entropy. The result shows that when four-objective optimization is conducted, with the ascent of <jats:italic>T</jats:italic> <jats:sub>2</jats:sub>, <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <m:mrow> <m:mover accent=\"true\"> <m:mrow> <m:mi>P</m:mi> </m:mrow> <m:mo>̄</m:mo> </m:mover> </m:mrow> </m:math> <jats:tex-math> $bar{P}$ </jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jnetdy-2023-0051_ineq_004.png\" /> </jats:alternatives> </jats:inline-formula> descends, <jats:italic>η</jats:italic> ascends, both <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http:","PeriodicalId":16428,"journal":{"name":"Journal of Non-Equilibrium Thermodynamics","volume":"83 7","pages":""},"PeriodicalIF":6.6,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138437513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The effects of fractional time derivatives in bioheat conduction technique on tumor thermal therapy 生物热传导技术中分数阶时间导数对肿瘤热疗的影响
IF 6.6 3区 工程技术
Journal of Non-Equilibrium Thermodynamics Pub Date : 2023-11-17 DOI: 10.1515/jnet-2023-0065
Ibrahim Abbas, Aatef Hobiny, Alaa El-Bary
{"title":"The effects of fractional time derivatives in bioheat conduction technique on tumor thermal therapy","authors":"Ibrahim Abbas, Aatef Hobiny, Alaa El-Bary","doi":"10.1515/jnet-2023-0065","DOIUrl":"https://doi.org/10.1515/jnet-2023-0065","url":null,"abstract":"The article utilizes the fractional bioheat model in spherical coordinates to explain the transfer of heat in living tissues during magnetic hyperthermia treatment for tumors. Maintaining therapeutic temperature is crucial in magnetic fluid hyperthermia, which requires accurate estimations of power dissipation to determine the appropriate number of magnetic particles required for treatment. To address this problem, a hybrid numerical approach that combines Laplace transforms, change of variables, and modified discretization techniques is proposed in this paper. The study investigates the impact of the fractional parameter and differences in thermophysical properties between diseased and healthy tissue. The numerical temperature results are presented in a graph, and their validity is demonstrated by comparing them with previous literature.","PeriodicalId":16428,"journal":{"name":"Journal of Non-Equilibrium Thermodynamics","volume":"50 1","pages":""},"PeriodicalIF":6.6,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138293325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Strategies to improve the thermal performance of solar collectors 提高太阳能集热器热性能的策略
3区 工程技术
Journal of Non-Equilibrium Thermodynamics Pub Date : 2023-10-25 DOI: 10.1515/jnetdy-2023-0040
Bader Alshuraiaan
{"title":"Strategies to improve the thermal performance of solar collectors","authors":"Bader Alshuraiaan","doi":"10.1515/jnetdy-2023-0040","DOIUrl":"https://doi.org/10.1515/jnetdy-2023-0040","url":null,"abstract":"Abstract The paper evaluates a passive method for heat transfer improvement in heat exchangers, which implies the use of nanofluids. All calculations were carried out with a constant volumetric flow rate. The study examines three fluids with 0–4 % volume concentrations of CuO, MgO, and Al 2 O 3 particles. The results indicate an increase in the heat transfer coefficient with increasing temperature. An Al 2 O 3 nanofluid (4 % concentration) contributed to the best thermal performance. The incorporation of a 4 % content of MgO yielded an augmentation in heat transfer ranging from 15 % to 22 %, whereas an analogous concentration of CuO led to a more substantial enhancement of 25 %. Notably, the introduction of nanoparticles of Al 2 O 3 produces a remarkable augmentation in heat transfer performance, with potential improvements of up to 36 %. The Nusselt number increases with increasing particle volume fraction and Reynolds number, according to results obtained for several nanoparticles (Al 2 O 3 , CuO, SiO 2 , and ZnO) with volume percentages in the range of 1–4 % and nanoparticle diameters of 25–70 nm. For all nanofluids, the time-averaged Nusselt number rises with a solid phase volume fraction increase of less than 5 %.","PeriodicalId":16428,"journal":{"name":"Journal of Non-Equilibrium Thermodynamics","volume":"C-29 8","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135113286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multidimensional numerical simulation of thermodynamic and oscillating gas flow processes of a Gifford-McMahon cryocooler Gifford-McMahon制冷机热力学和振荡气体流动过程的多维数值模拟
3区 工程技术
Journal of Non-Equilibrium Thermodynamics Pub Date : 2023-10-23 DOI: 10.1515/jnet-2023-0026
Debashis Panda, Ashok Kumar Satapathy, Sunil Kr. Sarangi, Upendra Behera
{"title":"Multidimensional numerical simulation of thermodynamic and oscillating gas flow processes of a Gifford-McMahon cryocooler","authors":"Debashis Panda, Ashok Kumar Satapathy, Sunil Kr. Sarangi, Upendra Behera","doi":"10.1515/jnet-2023-0026","DOIUrl":"https://doi.org/10.1515/jnet-2023-0026","url":null,"abstract":"Abstract The Gifford-McMahon cryocoolers are considered to be prominent candidates for the cooling of high-temperature superconducting magnets, liquefaction of permanent gases, helium recondensation in magnetic resonance imaging machines, cooling of superconducting quantum interference device, etc. In this paper, multi-dimensional numerical simulation is performed to visualize the oscillating heat and fluid flow processes that happen in a mechanically driven GM cryocooler. Influence of the ideal gas equation and real gas equation of states on the cooling behaviour is explained. The minimum achievable refrigeration temperature of a uniform mesh regenerator is compared with a multi-mesh regenerator. It is noticed that a multi-mesh regenerator produces a lower refrigeration temperature as compared to a uniform mesh regenerator. In addition to this, a one-dimensional simulation is conducted and results are compared with multi-dimensional numerical simulation. The no-load temperature value calculated by the one-dimensional model and multi-dimensional model with ideal gas is lower than that of real gas equations. Additionally, the refrigerating capacity calculated by the one-dimensional model and multi-dimensional model with the ideal gas equation is higher than those of the real gas equation of state.","PeriodicalId":16428,"journal":{"name":"Journal of Non-Equilibrium Thermodynamics","volume":"33 10","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135365513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Heat transfer effect on the performance of three-heat-reservoir thermal Brownian refrigerator 传热对三热源布朗制冷机性能的影响
3区 工程技术
Journal of Non-Equilibrium Thermodynamics Pub Date : 2023-10-09 DOI: 10.1515/jnet-2023-0050
Congzheng Qi, Lingen Chen, Yanlin Ge, Huijun Feng
{"title":"Heat transfer effect on the performance of three-heat-reservoir thermal Brownian refrigerator","authors":"Congzheng Qi, Lingen Chen, Yanlin Ge, Huijun Feng","doi":"10.1515/jnet-2023-0050","DOIUrl":"https://doi.org/10.1515/jnet-2023-0050","url":null,"abstract":"Abstract A finite-time thermodynamic (FTT) model of three-heat-reservoir thermal Brownian refrigerator is established in this paper. This model can be equivalent to the coupling of a thermal Brownian engine and a thermal Brownian refrigerator with heat transfer effects. Expressions for cooling load and coefficient of performance (COP) are derived by combining FTT and non-equilibrium thermodynamics (NET). The system performance is studied and compared with those of previous models. For fixed internal parameters, the thermal conductance distributions among three heat exchangers are optimized for maximal cooling load. For fixed inventory allocations, the internal parameters are also optimized for maximal cooling load. Finally, the double-maximum cooling load is obtained by optimizing internal parameters and external thermal conductance distributions simultaneously, and the optimal operating temperatures are also derived. Results show that half of total thermal conductance should be placed in condenser to reject heat to ambient under maximal cooling load regime. The heat transfer determines system performance by controlling the working temperatures and the coupling of two external loads. The system works in reversible state when COP reaches its maximum value. The new performance limits can predict that of three-heat-reservoir thermal Brownian refrigerator more accurately, and also include those of NET model.","PeriodicalId":16428,"journal":{"name":"Journal of Non-Equilibrium Thermodynamics","volume":"118 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135044125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Frontmatter 头版头条
3区 工程技术
Journal of Non-Equilibrium Thermodynamics Pub Date : 2023-10-01 DOI: 10.1515/jnet-2023-frontmatter4
{"title":"Frontmatter","authors":"","doi":"10.1515/jnet-2023-frontmatter4","DOIUrl":"https://doi.org/10.1515/jnet-2023-frontmatter4","url":null,"abstract":"","PeriodicalId":16428,"journal":{"name":"Journal of Non-Equilibrium Thermodynamics","volume":"69 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134935280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improved modeling of Janus membrane considering the influence of hydrophilic layer characteristics 考虑亲水层特性影响的Janus膜的改进建模
3区 工程技术
Journal of Non-Equilibrium Thermodynamics Pub Date : 2023-09-18 DOI: 10.1515/jnet-2023-0037
Noha M. Sayed, Hussien Noby, Kyaw Thu, Ahmed H. El-Shazly
{"title":"Improved modeling of Janus membrane considering the influence of hydrophilic layer characteristics","authors":"Noha M. Sayed, Hussien Noby, Kyaw Thu, Ahmed H. El-Shazly","doi":"10.1515/jnet-2023-0037","DOIUrl":"https://doi.org/10.1515/jnet-2023-0037","url":null,"abstract":"Abstract Some of the previous investigations neglect the mass transfer contribution of the hydrophilic layer for modeling the Janus membrane that is used for direct contact membrane distillation (DCMD). This work studies the impact of adding such resistance on the performance of the DCMD, especially on the temperature polarization coefficient (TPC), thermal efficiency, and permeate flux. The commercial software Ansys 2020 was used to describe the transport behavior through the Janus membrane. The bulk-flow model was employed to evaluate the permeate flow through the hydrophilic layer for the first time. Simulation results were compared with the experimental results from the literature for validating the model, and a satisfactory agreement was found. Results demonstrated that the permeate flux increased by about 61.3 % with changing the porosity of the hydrophilic layer from 0.5 to 0.9 for the membrane with the lowest hydrophilic layer thickness. Moreover, the thermal conductivities of both layers contribute significantly to the DCMD’s overall performance enhancement. Vapour flux might be enhanced by increasing the hydrophilic layer’s thermal conductivity while decreasing the hydrophobic layer’s thermal conductivity. Finally, the DCMD thermal efficiency was investigated, for the first time, in terms of both layer characteristics.","PeriodicalId":16428,"journal":{"name":"Journal of Non-Equilibrium Thermodynamics","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135110266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信