Journal of Nanotechnology最新文献

筛选
英文 中文
Green Synthesis of Zinc Oxide Nanoparticles using extract of onion (Allium cepa) peel [Síntesis verde de nanopartículas de óxido de zinc utilizando extracto de cáscara de cebolla (Allium cepa)] 利用洋葱(Allium cepa)皮提取物绿色合成纳米氧化锌颗粒[Síntesis verde de nanopartículas de óxido de zinc utilizando extracto de cáscara de cebolla (Allium cepa)]。
IF 3.9
Journal of Nanotechnology Pub Date : 2024-07-10 DOI: 10.32829/nanoj.v6i1.212
Mariella Cortez Caillahua, Saida Margarita Cuadro Oria
{"title":"Green Synthesis of Zinc Oxide Nanoparticles using extract of onion (Allium cepa) peel [Síntesis verde de nanopartículas de óxido de zinc utilizando extracto de cáscara de cebolla (Allium cepa)]","authors":"Mariella Cortez Caillahua, Saida Margarita Cuadro Oria","doi":"10.32829/nanoj.v6i1.212","DOIUrl":"https://doi.org/10.32829/nanoj.v6i1.212","url":null,"abstract":"In the present study, zinc oxide nanoparticles were synthesized by green synthesis using extract of onion (Allium cepa) peel. The extract was prepared by heating at 80 C with constant stirring for 30 minutes. Samples of ZnO nanoparticles were synthesized using zinc nitrate as a precursor at temperatures between 70 and 80 °C until the formation of a colloid that was calcined at 200 °C for a period of 3 hours. The green synthesized ZnO nanoparticles were characterized by X-ray diffraction using Profex 4.3.4 software. The results showed formation of crystalline ZnO nanoparticles and the particles ranging between 21.4 and 38.1 nm. The high degree of agglomeration shows particles in the micrometer range, however, the individual size of the particles is in the nanometer-scale.","PeriodicalId":16378,"journal":{"name":"Journal of Nanotechnology","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141660592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New Insights on Biosynthesis of Nanoparticles Using Plants Emphasizing the Use of Alfalfa (Medicago sativa L.) 利用植物合成纳米粒子的新见解,强调紫花苜蓿(Medicago sativa L.)的使用
IF 4.2
Journal of Nanotechnology Pub Date : 2024-03-27 DOI: 10.1155/2024/9721166
I. Kokina, I. Plaksenkova, Lauris Jankovskis, Marija Jermaļonoka, R. Galek
{"title":"New Insights on Biosynthesis of Nanoparticles Using Plants Emphasizing the Use of Alfalfa (Medicago sativa L.)","authors":"I. Kokina, I. Plaksenkova, Lauris Jankovskis, Marija Jermaļonoka, R. Galek","doi":"10.1155/2024/9721166","DOIUrl":"https://doi.org/10.1155/2024/9721166","url":null,"abstract":"Biological synthesis of nanoparticles (NPs) using alfalfa (Medicago sativa L.) and other plants has several advantages such as lower costs, reduction of pollution, and improvement of the environment and human health. Often, biosynthesis is used to synthesize Ag, Au, and ZnO NPs. Less often are also synthesized Cu and Fe NPs. Synthesis with plant extracts from their parts or callus cultures is a widely used method since extracts contain the most significant number of biomolecules. Synthesis with living plants (in vivo) provides NPs with improved properties for better interactions with plants but is used less often due to the long realization time, the need to control the plants’ growing conditions, and difficulty in controlling the size and shape of the synthesized NPs. Here, we performed a systematic review of various methods for the biological synthesis of different metal NPs with different plants, to highlight advantages and disadvantages of mentioned methods. For discussion, results showed that biosynthesis of NPs allows obtaining NPs with reduced toxicity, and their size and shape depend on the type and number of biomolecules present in plants. Plant biomolecules determine the antibacterial and anticancer properties of NPs, as well as increasing the use of NPs in biomedicine, for better drug transport, therefore medicinal plants or sea plants are mostly used for biosynthesis. NPs which were synthesized in marine plants could be a very effective agent against water bacteria; therefore, if NP biosynthesis takes place in water, biological water purification is possible. Limitations of the study included a great methodological diversity of the synthesis, it is still difficult to systematize the synthesis methods, and it seems that each described study uses a different synthesis protocol; therefore, in future studies, it is necessary to clarify which method can provide the most efficient biosynthesis and develop a unified approach.","PeriodicalId":16378,"journal":{"name":"Journal of Nanotechnology","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140376669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tunable High-Frequency Acoustoelectric Current Oscillations in Fluorine-Doped Single-Walled Carbon Nanotubes 掺氟单壁碳纳米管中的可调谐高频声电电流振荡
IF 4.2
Journal of Nanotechnology Pub Date : 2024-03-25 DOI: 10.1155/2024/7426184
D. Sekyi-Arthur, S.Y. Mensah, Kofi Wi-Adu, K. Dompreh, R. Edziah
{"title":"Tunable High-Frequency Acoustoelectric Current Oscillations in Fluorine-Doped Single-Walled Carbon Nanotubes","authors":"D. Sekyi-Arthur, S.Y. Mensah, Kofi Wi-Adu, K. Dompreh, R. Edziah","doi":"10.1155/2024/7426184","DOIUrl":"https://doi.org/10.1155/2024/7426184","url":null,"abstract":"Herein, we report on a fluorine-doped single-walled carbon nanotube (FSWCNT) phenomenon, that yields tunable high-frequency self-sustained acoustoelectric direct current (ADC) oscillations. A tractable analytical method was used in the hypersound domain, to base the calculations on carriers in the lowest miniband. Hypothetically, the energy of interaction between the carriers and the acoustic phonons is less than the energy of the typical carriers. High-order harmonics of the acoustic phonons’ effective field could be disregarded under this supposition. The ADC was observed to exhibit a nonlinearity, that resulted from the carrier distribution function’s distortion as a result of interaction with the acoustic phonons, which had strong nonlinear effects. Theoretically, we demonstrated that the dynamics of space charge instabilities, due to Bragg reflection of Bloch oscillating carriers in the FSWCNT’s miniband, were the only factors which contributed to the creation of radiation in the terahertz (THz) frequency range. The study also investigated the influence of various FSWCNT parameters such as the overlapping integrals (Δs and Δz), ac-field E1, and carrier concentration noon the behaviour of the ADC. The results showed that the intensity of the ADC oscillation Jzzae/Joae could be tuned by adjusting Δs, Δz, E1, and no.This tunability suggests that FSWCNTs could be used as an active device operating at very high frequencies, potentially reaching the submillimeter wavelength range. The study also suggests the possibility of domain suppression and acoustic Bloch gain through dynamic ADC stabilisation.","PeriodicalId":16378,"journal":{"name":"Journal of Nanotechnology","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140385038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancement of Optical Properties and Stability in CsPbBr3 Using CQD and TOP Doping for Solar Cell Applications 利用 CQD 和 TOP 掺杂增强 CsPbBr3 的光学特性和稳定性,以促进太阳能电池的应用
IF 4.2
Journal of Nanotechnology Pub Date : 2024-01-10 DOI: 10.1155/2024/5555895
Chiayee Salih Ajaj, Diyar Sadiq
{"title":"Enhancement of Optical Properties and Stability in CsPbBr3 Using CQD and TOP Doping for Solar Cell Applications","authors":"Chiayee Salih Ajaj, Diyar Sadiq","doi":"10.1155/2024/5555895","DOIUrl":"https://doi.org/10.1155/2024/5555895","url":null,"abstract":"Cesium lead bromide (CsPbBr3) nanocrystals exhibit remarkable optoelectronic properties and exceptional stability. As a result, they have garnered significant interest for their potential applications in various fields, including solar cells, light-emitting devices, photodetectors, and lasers. Despite its resistance to moisture, oxygen, and heat compared to other perovskite materials, CsPbBr3 still faces challenges maintaining its structural and optical stability over extended periods. This study proposes a robust solution to enhance and improve simultaneously the photoluminescence intensity and stability of CsPbBr3 nanocrystals. The solution involves doping the perovskite precursor with green-synthesized carbon quantum dots (CQDs) and tri-n-octyl phosphine (TOP). The results indicate that the photoluminescence intensity of the perovskite nanocrystals (NCs) is sensitive to varying CQD ratios. A high photoluminescence intensity enhancement of 45% was achieved at the optimal CQDs ratio. The synthesized perovskite NCs/CQDs also demonstrated improved stability by adding TOP into the mixture. After storage in the air for 45 days, the mixed perovskite NCs maintained their performance, which was almost unchanged. Solar cell devices based on the modified perovskite NCs showed a power conversion of 7.74%. The devices also demonstrated a significant open-circuit voltage (VOC), with the most successful device achieving a VOC of 1.193 V, an Isc of 10.5748 mA cm−2, and a fill factor (FF) of 61%. This study introduces a cost-effective method for producing high-quality all-inorganic optoelectronic devices with enhanced performance and stability.","PeriodicalId":16378,"journal":{"name":"Journal of Nanotechnology","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139438899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Boosting LiMn2O4 Diffusion Coefficients and Stability via Fe/Mg Doping and MWCNT Synergistically Modulating Microstructure 通过掺杂铁/镁和 MWCNT 协同调节微结构提高锰酸锂扩散系数和稳定性
IF 4.2
Journal of Nanotechnology Pub Date : 2024-01-05 DOI: 10.1155/2024/7020995
Natasha Ross, S. Willenberg, Thando Juqu, E. Carleschi, Bryan P. Doyle
{"title":"Boosting LiMn2O4 Diffusion Coefficients and Stability via Fe/Mg Doping and MWCNT Synergistically Modulating Microstructure","authors":"Natasha Ross, S. Willenberg, Thando Juqu, E. Carleschi, Bryan P. Doyle","doi":"10.1155/2024/7020995","DOIUrl":"https://doi.org/10.1155/2024/7020995","url":null,"abstract":"The dissolution of manganese and its deposition on the anode surface cause poor cycling stability in lithium-ion batteries. To alleviate these issues, this study probes the electrochemical activity of highly crystalline and cation-adjusted lithium manganese oxide (LMO) carbon spinel composite obtained via a modified sol-gel synthesis procedure. The pristine LMO cathode was functionalized with a Fe and Mg alloy and fused with purified multiwalled carbon nanotubes (MWCNTs) to form a catalytically stabilized LiMn1.98Fe0.01Mg0.01O4/MWCNT (LMO-FeMg/MWCNT) framework. High-resolution SEM analysis showed well-dispersed particles in the nanometer size range. The electrochemical characteristics of the novel composite materials yielded favourable electrochemical results with diffusion coefficients of 1.91 × 10−9 cm2·s−1 and 5.83 × 10−10 cm2·s−1 for LMO-FeMg and LMO-FeMg/MWCNT, respectively. This improvement was supported by impedance studies which showed a considerable Rct reduction of 0.27 Ω and 0.71 Ω. The cation stabilized system outperformed the pristine LMO material with specific capacities around 145 mAh·g−1, due to an enhancement in electrochemical activity and structural stability.","PeriodicalId":16378,"journal":{"name":"Journal of Nanotechnology","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139381628","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phytosynthesized Nanoparticles as Novel Antifungal Agent for Sustainable Agriculture: A Mechanistic Approach, Current Advances, and Future Directions 植物合成纳米粒子作为可持续农业的新型抗真菌剂:机理方法、当前进展和未来方向
IF 4.2
Journal of Nanotechnology Pub Date : 2023-12-29 DOI: 10.1155/2023/8011189
Javeria Parveen, Tahira Sultana, Abeer Kazmi, Khafsa Malik, Abd Ullah, Amir Ali, Bushra Qayyum, N. Raja, Z. Mashwani, Saif Ur Rehman
{"title":"Phytosynthesized Nanoparticles as Novel Antifungal Agent for Sustainable Agriculture: A Mechanistic Approach, Current Advances, and Future Directions","authors":"Javeria Parveen, Tahira Sultana, Abeer Kazmi, Khafsa Malik, Abd Ullah, Amir Ali, Bushra Qayyum, N. Raja, Z. Mashwani, Saif Ur Rehman","doi":"10.1155/2023/8011189","DOIUrl":"https://doi.org/10.1155/2023/8011189","url":null,"abstract":"Due to rapidly changing environmental conditions, virulent pathogens have arisen continuously that invades the crops and badly affects their yield and quality of the cash crops which results in economic losses. To overcome the prevalent infection of fungal pathogens, there is an utmost need to develop alternative techniques that avoid conventional agriculture practices. The use of various chemical fungicides is not an environmentally sustainable solution to fungal diseases because it produces environmental contamination and is dangerous for human health. Nanotechnology provides solutions to disease control issues in a significant way. The scientific and industrial systems are being changed by this development. Similarly, nano-based instruments are highly promising in the agriculture sector, particularly for the production of powerful formulations that require appropriate distribution of agrochemicals, nutrients, pesticides/insecticides, and even growth regulators for improved efficiency of use. Nanotechnology provides an inexpensive, environmentally friendly, and alternative effective monitoring of agricultural fungal pathogens. Green nanotechnology is an innovative methodology that revolutionized the field of agriculture to solve these problems. Despite increasing plant growth, nanoparticles meet the agriculture demand for high yield. This study mainly focuses on the promise of various methods for the treatment of fungal diseases through nanoparticles.","PeriodicalId":16378,"journal":{"name":"Journal of Nanotechnology","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139142731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reduction of SO2 to Elemental Sulfur in Flue Gas Using Copper-Alumina Catalysts 使用铜-氧化铝催化剂将烟气中的二氧化硫还原为元素硫
IF 4.2
Journal of Nanotechnology Pub Date : 2023-12-23 DOI: 10.1155/2023/3723612
S. E. Mousavi, H. Pahlavanzadeh, Reza Khalighi, M. Khani, H. A. Ebrahim, Saeed Abbasizadeh, A. Mozaffari
{"title":"Reduction of SO2 to Elemental Sulfur in Flue Gas Using Copper-Alumina Catalysts","authors":"S. E. Mousavi, H. Pahlavanzadeh, Reza Khalighi, M. Khani, H. A. Ebrahim, Saeed Abbasizadeh, A. Mozaffari","doi":"10.1155/2023/3723612","DOIUrl":"https://doi.org/10.1155/2023/3723612","url":null,"abstract":"This study aims to propose an advanced catalyst for the selective catalytic reduction of SO2, as a sustainable process to mitigate the emission of this toxic gas, which is a significant environmental concern. The conversion of SO2 through catalytic reduction with CH4 to elemental sulfur was investigated using Al2O3-Cu catalysts. The reaction was conducted under atmospheric pressure and at a temperature range of 550–800°C. A remarkable 99.9% SO2 conversion rate and 99.5% sulfur selectivity were achieved using the Al2O3-Cu (10%) catalyst at 750°C. The highest conversion rates of SO2 to elemental sulfur, with minimal production of undesirable by-products such as H2S and COS, were obtained when the SO2/CH4 molar feed ratio was set at 2, which is the stoichiometric ratio. Furthermore, the optimal catalyst exhibited excellent long-term stability for SO2 reduction with methane.","PeriodicalId":16378,"journal":{"name":"Journal of Nanotechnology","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139161474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unlocking the Potential of NiSO4·6H2O/NaOCl/NaOH Catalytic System: Insights into Nickel Peroxide as an Intermediate for Benzonitrile Synthesis in Water 挖掘 NiSO4-6H2O/NaOCl/NaOH 催化体系的潜力:过氧化镍作为水中合成苯腈的中间体的启示
IF 4.2
Journal of Nanotechnology Pub Date : 2023-11-18 DOI: 10.1155/2023/9940845
Abdel Ghany F. Shoair, A. S. Almalki, M. M. Shanab, Ahmed M. Sheta, Amir El-Basiony, Nasser A. El-Ghamaz, Hany A. Nasef, Hussein A. Khalaf
{"title":"Unlocking the Potential of NiSO4·6H2O/NaOCl/NaOH Catalytic System: Insights into Nickel Peroxide as an Intermediate for Benzonitrile Synthesis in Water","authors":"Abdel Ghany F. Shoair, A. S. Almalki, M. M. Shanab, Ahmed M. Sheta, Amir El-Basiony, Nasser A. El-Ghamaz, Hany A. Nasef, Hussein A. Khalaf","doi":"10.1155/2023/9940845","DOIUrl":"https://doi.org/10.1155/2023/9940845","url":null,"abstract":"Nickel peroxide nanoparticles (NPNPs) were prepared and characterized using various techniques including transmission electron microscope (TEM), scan electron microscope (SEM), energy dispersive spectrometer (EDS), X-ray diffraction (XRD), and FTIR spectra. The aqueous basic catalytic system NiSO4·6H2O/NaOCl/NaOH (pH = 14) was investigated for the catalytic dehydrogenation of benzylamine and parasubstituents to their corresponding nitriles at room temperature. The obtained results confirmed the formation of NiO2 nanocrystalline particles with a size of 20 nm. Benzylamine with electron-donating groups showed higher yields of nitriles compared to electron-withdrawing groups. The mechanism involved in the in situ generated NiO2 nanoparticles dehydrogenating benzylamine to benzonitrile, with the produced NiO converting back to NiO2 nanoparticles through the excess of NaOCl.","PeriodicalId":16378,"journal":{"name":"Journal of Nanotechnology","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2023-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139261142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanostructured Lipid Carriers for Improved Delivery of Therapeutics via the Oral Route 纳米结构脂质载体改善口服给药途径
Journal of Nanotechnology Pub Date : 2023-11-06 DOI: 10.1155/2023/4687959
Alok Kumar Mahor, Prem Prakash Singh, Rishikesh Gupta, Peeyush Bhardwaj, Priyanka Rathore, Ankita Kishore, Rohit Goyal, Neeraj Sharma, Jyoti Verma, Jessica M. Rosenholm, Kuldeep K. Bansal
{"title":"Nanostructured Lipid Carriers for Improved Delivery of Therapeutics via the Oral Route","authors":"Alok Kumar Mahor, Prem Prakash Singh, Rishikesh Gupta, Peeyush Bhardwaj, Priyanka Rathore, Ankita Kishore, Rohit Goyal, Neeraj Sharma, Jyoti Verma, Jessica M. Rosenholm, Kuldeep K. Bansal","doi":"10.1155/2023/4687959","DOIUrl":"https://doi.org/10.1155/2023/4687959","url":null,"abstract":"Drug delivery via the oral route has always been challenging for poorly soluble drugs. Acid-induced hydrolysis, enzymatic degradation, and poor mucosal absorbency remain the primary hiccups for effective oral delivery of medications. With the advent of nanotechnology, nanostructured lipid carriers (NLCs) have emerged as a promising delivery carrier that can circumvent gastrointestinal tract (GIT) barriers hindering the solubility and bioavailability of such drugs. These NLCs can efficiently transport drug moieties across intestinal membranes shielding medications from intestinal pH and enzymatic degradation. Because they are composed of lipidic materials, they can be easily absorbed or taken up by various pathways such as transcellular absorption, paracellular transport, and M-cell uptake. Such mechanisms not only improve the absorption and solubility of drugs but also augment bioavailability and residence time and may bypass first-pass metabolism. This review explores the diverse applications of nanostructured lipid carriers (NLCs) in oral drug delivery for various medical conditions, shedding light on their current regulatory status, including FDA-approved options and those in pre/clinical stages. The review also features patented NLC formulations. It provides valuable insights into how NLCs can be harnessed for effective oral drug delivery and outlines recent advancements in optimizing their performance to tackle gastrointestinal barriers, thus opening new possibilities for NLCs in future pharmaceutical applications.","PeriodicalId":16378,"journal":{"name":"Journal of Nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135679185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Green Synthesis of Silver Nanoparticles Using Extracts of Ehretia cymosa and Evaluation of Its Antibacterial Activity in Cream and Ointment Drug Delivery Systems 利用假体提取物绿色合成纳米银及其在乳膏和软膏给药系统中的抗菌活性评价
Journal of Nanotechnology Pub Date : 2023-10-31 DOI: 10.1155/2023/2808015
Olutayo Ademola Adeleye, Olatunji Kayode Aremu, Haroon Iqbal, Musiliu Oluseun Adedokun, Oluyemisi Adebowale Bamiro, Olufemi Lionel Okunye, Mbang N. Femi-Oyewo, Kehinde Oluseun Sodeinde, Zwanden S. Yahaya, Adepero Olubukola Awolesi
{"title":"Green Synthesis of Silver Nanoparticles Using Extracts of Ehretia cymosa and Evaluation of Its Antibacterial Activity in Cream and Ointment Drug Delivery Systems","authors":"Olutayo Ademola Adeleye, Olatunji Kayode Aremu, Haroon Iqbal, Musiliu Oluseun Adedokun, Oluyemisi Adebowale Bamiro, Olufemi Lionel Okunye, Mbang N. Femi-Oyewo, Kehinde Oluseun Sodeinde, Zwanden S. Yahaya, Adepero Olubukola Awolesi","doi":"10.1155/2023/2808015","DOIUrl":"https://doi.org/10.1155/2023/2808015","url":null,"abstract":"Objectives. The use of antibacterial drugs for the treatment of infections has been on for several decades but not without some challenges such as resistance. Research on natural products is on-going to mitigate this challenge. The aim of this study was to synthesize silver nanoparticles (SNPs) with aqueous and methanol extract of Ehretia cymosa leaf and to explore its antibacterial potentials in semisolid dosage delivery system as topical antibacterial cream and ointment. Methods. E. cymosa leaf was extracted by macerating in distilled water and methanol. The extracts were used to synthesize SNPs. SNPs were characterized and confirmed by visual observation, UV-visible spectroscopy, FTIR, atomic absorption spectroscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy. SNPs were used to formulate cream and ointment, and the antibacterial activity of the formulations was evaluated against Staphylococcus aureus and Escherichia coli. Results. Absorption band was observed at 450 nm for aqueous extract SNPs and 420 nm for methanol extract SNPs due to surface plasmon resonance. SNPs were agglomerated with the irregular size of 55 nm and 90 nm. The formulations had acceptable physicochemical properties with good drug-excipient compatibility. The antibacterial activity of cream formulations had a significantly ( <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\"> <mi>p</mi> <mo><</mo> <mn>0.0001</mn> </math> ) higher antibacterial activity compared to ointment formulations. Both formulations with SNPs had higher antibacterial activity than ciprofloxacin. Conclusion. Cream and ointment formulations loaded with green synthesized E. cymosa leaf extract SNPs present a potential for a more efficient and effective antibacterial drug delivery to ameliorate the impact of antibacterial drug resistance.","PeriodicalId":16378,"journal":{"name":"Journal of Nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135872141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信