纳米结构脂质载体改善口服给药途径

IF 3.9 Q2 NANOSCIENCE & NANOTECHNOLOGY
Alok Kumar Mahor, Prem Prakash Singh, Rishikesh Gupta, Peeyush Bhardwaj, Priyanka Rathore, Ankita Kishore, Rohit Goyal, Neeraj Sharma, Jyoti Verma, Jessica M. Rosenholm, Kuldeep K. Bansal
{"title":"纳米结构脂质载体改善口服给药途径","authors":"Alok Kumar Mahor, Prem Prakash Singh, Rishikesh Gupta, Peeyush Bhardwaj, Priyanka Rathore, Ankita Kishore, Rohit Goyal, Neeraj Sharma, Jyoti Verma, Jessica M. Rosenholm, Kuldeep K. Bansal","doi":"10.1155/2023/4687959","DOIUrl":null,"url":null,"abstract":"Drug delivery via the oral route has always been challenging for poorly soluble drugs. Acid-induced hydrolysis, enzymatic degradation, and poor mucosal absorbency remain the primary hiccups for effective oral delivery of medications. With the advent of nanotechnology, nanostructured lipid carriers (NLCs) have emerged as a promising delivery carrier that can circumvent gastrointestinal tract (GIT) barriers hindering the solubility and bioavailability of such drugs. These NLCs can efficiently transport drug moieties across intestinal membranes shielding medications from intestinal pH and enzymatic degradation. Because they are composed of lipidic materials, they can be easily absorbed or taken up by various pathways such as transcellular absorption, paracellular transport, and M-cell uptake. Such mechanisms not only improve the absorption and solubility of drugs but also augment bioavailability and residence time and may bypass first-pass metabolism. This review explores the diverse applications of nanostructured lipid carriers (NLCs) in oral drug delivery for various medical conditions, shedding light on their current regulatory status, including FDA-approved options and those in pre/clinical stages. The review also features patented NLC formulations. It provides valuable insights into how NLCs can be harnessed for effective oral drug delivery and outlines recent advancements in optimizing their performance to tackle gastrointestinal barriers, thus opening new possibilities for NLCs in future pharmaceutical applications.","PeriodicalId":16378,"journal":{"name":"Journal of Nanotechnology","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanostructured Lipid Carriers for Improved Delivery of Therapeutics via the Oral Route\",\"authors\":\"Alok Kumar Mahor, Prem Prakash Singh, Rishikesh Gupta, Peeyush Bhardwaj, Priyanka Rathore, Ankita Kishore, Rohit Goyal, Neeraj Sharma, Jyoti Verma, Jessica M. Rosenholm, Kuldeep K. Bansal\",\"doi\":\"10.1155/2023/4687959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Drug delivery via the oral route has always been challenging for poorly soluble drugs. Acid-induced hydrolysis, enzymatic degradation, and poor mucosal absorbency remain the primary hiccups for effective oral delivery of medications. With the advent of nanotechnology, nanostructured lipid carriers (NLCs) have emerged as a promising delivery carrier that can circumvent gastrointestinal tract (GIT) barriers hindering the solubility and bioavailability of such drugs. These NLCs can efficiently transport drug moieties across intestinal membranes shielding medications from intestinal pH and enzymatic degradation. Because they are composed of lipidic materials, they can be easily absorbed or taken up by various pathways such as transcellular absorption, paracellular transport, and M-cell uptake. Such mechanisms not only improve the absorption and solubility of drugs but also augment bioavailability and residence time and may bypass first-pass metabolism. This review explores the diverse applications of nanostructured lipid carriers (NLCs) in oral drug delivery for various medical conditions, shedding light on their current regulatory status, including FDA-approved options and those in pre/clinical stages. The review also features patented NLC formulations. It provides valuable insights into how NLCs can be harnessed for effective oral drug delivery and outlines recent advancements in optimizing their performance to tackle gastrointestinal barriers, thus opening new possibilities for NLCs in future pharmaceutical applications.\",\"PeriodicalId\":16378,\"journal\":{\"name\":\"Journal of Nanotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/4687959\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/4687959","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

对于难溶性药物,口服给药一直是一个挑战。酸诱导的水解、酶降解和不良的粘膜吸收仍然是有效口服给药的主要障碍。随着纳米技术的出现,纳米结构脂质载体(nlc)已成为一种有前途的递送载体,可以绕过胃肠道(GIT)屏障,阻碍此类药物的溶解度和生物利用度。这些NLCs可以有效地通过肠膜运输药物,保护药物不受肠道pH和酶降解的影响。由于它们是由脂质物质组成的,它们很容易被吸收或通过各种途径被吸收,如跨细胞吸收、细胞旁运输和m细胞摄取。这种机制不仅提高了药物的吸收和溶解度,而且增加了生物利用度和停留时间,并可能绕过第一过代谢。本综述探讨了纳米结构脂质载体(nlc)在各种医疗条件下口服给药中的各种应用,阐明了其目前的监管状况,包括fda批准的选择和处于临床前/临床阶段的选择。该审查还包括专利的NLC配方。它提供了有价值的见解,如何利用ncs有效的口服给药,并概述了优化其性能以解决胃肠道障碍的最新进展,从而为ncs在未来的制药应用开辟了新的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nanostructured Lipid Carriers for Improved Delivery of Therapeutics via the Oral Route
Drug delivery via the oral route has always been challenging for poorly soluble drugs. Acid-induced hydrolysis, enzymatic degradation, and poor mucosal absorbency remain the primary hiccups for effective oral delivery of medications. With the advent of nanotechnology, nanostructured lipid carriers (NLCs) have emerged as a promising delivery carrier that can circumvent gastrointestinal tract (GIT) barriers hindering the solubility and bioavailability of such drugs. These NLCs can efficiently transport drug moieties across intestinal membranes shielding medications from intestinal pH and enzymatic degradation. Because they are composed of lipidic materials, they can be easily absorbed or taken up by various pathways such as transcellular absorption, paracellular transport, and M-cell uptake. Such mechanisms not only improve the absorption and solubility of drugs but also augment bioavailability and residence time and may bypass first-pass metabolism. This review explores the diverse applications of nanostructured lipid carriers (NLCs) in oral drug delivery for various medical conditions, shedding light on their current regulatory status, including FDA-approved options and those in pre/clinical stages. The review also features patented NLC formulations. It provides valuable insights into how NLCs can be harnessed for effective oral drug delivery and outlines recent advancements in optimizing their performance to tackle gastrointestinal barriers, thus opening new possibilities for NLCs in future pharmaceutical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nanotechnology
Journal of Nanotechnology NANOSCIENCE & NANOTECHNOLOGY-
CiteScore
5.50
自引率
2.40%
发文量
25
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信