Proceedings of the 23rd International Conference on Hybrid Systems: Computation and Control最新文献

筛选
英文 中文
Piece-wise analytic trajectory computation for polytopic switching between stable affine systems 稳定仿射系统间多面体切换的分段解析轨迹计算
M. Rabi
{"title":"Piece-wise analytic trajectory computation for polytopic switching between stable affine systems","authors":"M. Rabi","doi":"10.1145/3365365.3382204","DOIUrl":"https://doi.org/10.1145/3365365.3382204","url":null,"abstract":"Our problem is to compute trajectories of a hybrid system that switches between stable affine ODEs, with switching triggered by hyperplane crossings. Instead of integrating over relatively short time steps, we propose to analytically calculate the affine ODE trajectories between switching times. Our algorithm computes the switching times themselves by Chebyshev interpolation of the analytic trajectory pieces, and polynomial root finding. We shrink the interpolation time intervals using bounds on the times needed by the affine ODE trajectories to enter certain Lyapunov sub-level sets. Based on the Chebfun package, we give a MATLAB implementation of our algorithm. We find that this implementation simulates Relay feedback systems as accurately and sometimes faster than conventional algorithms.","PeriodicalId":162317,"journal":{"name":"Proceedings of the 23rd International Conference on Hybrid Systems: Computation and Control","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122290171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Does sample-time emulation preserve exponential stability? 样本时间模拟是否保持指数稳定性?
A. Proskurnikov
{"title":"Does sample-time emulation preserve exponential stability?","authors":"A. Proskurnikov","doi":"10.1145/3365365.3382221","DOIUrl":"https://doi.org/10.1145/3365365.3382221","url":null,"abstract":"Whereas classical control theory provides many methods for designing continuous-time feedback controllers, nowadays control algorithms are implemented on digital platforms and have to be designed in sampled time. Approaches to sampled-time control design are based on either discretization of the plant enabling discrete-time controller synthesis, or various redesign methods converting a continuous-time controller into a sampled-time approximation, providing comparable closed-loop system properties. The simplest of redesign approaches, typically used in practice, is the emulation of continuous-time feedback by sufficiently fast sampling. In spite of its simplicity, emulation gives rise to an important problem: does emulation at a sufficiently high rate (or, equivalently, with a small sampling time) preserve the stability of the closed-loop system? In this paper, we address this problem for the case of exponential stability (local or global). Even for linear systems, the problem of stability preservation becomes non-trivial when sampling is aperiodic. For nonlinear systems, viability of emulation approach is usually proved only under quite restrictive assumptions on the plant and the controller, which, as will be shown, in fact be discarded.","PeriodicalId":162317,"journal":{"name":"Proceedings of the 23rd International Conference on Hybrid Systems: Computation and Control","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130329610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Convergence of ant colony multi-agent swarms 蚁群多智能体群体的收敛性
Daniel Jarne Ornia, M. Mazo
{"title":"Convergence of ant colony multi-agent swarms","authors":"Daniel Jarne Ornia, M. Mazo","doi":"10.1145/3365365.3382199","DOIUrl":"https://doi.org/10.1145/3365365.3382199","url":null,"abstract":"Ant Colony algorithms are a set of biologically inspired algorithms used commonly to solve distributed optimization problems. Convergence has been proven in the context of optimization processes, but these proofs are not applicable in the framework of robotic control. In order to use Ant Colony algorithms to control robotic swarms, we present in this work more general results that prove asymptotic convergence of a multi-agent Ant Colony swarm moving in a weighted graph.","PeriodicalId":162317,"journal":{"name":"Proceedings of the 23rd International Conference on Hybrid Systems: Computation and Control","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121903873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Worst-case topological entropy and minimal data rate for state observation of switched linear systems 切换线性系统状态观测的最坏情况拓扑熵和最小数据率
Guillaume O. Berger, R. Jungers
{"title":"Worst-case topological entropy and minimal data rate for state observation of switched linear systems","authors":"Guillaume O. Berger, R. Jungers","doi":"10.1145/3365365.3382195","DOIUrl":"https://doi.org/10.1145/3365365.3382195","url":null,"abstract":"We introduce and study the concept of worst-case topological entropy of switched linear systems under arbitrary switching. It is shown that this quantity is equal to the minimal data rate (number of bits per second) required for the state observation of the switched linear system with any switching signal. A computable closed-form expression is presented for the worst-case topological entropy of switched linear systems. Finally, a practical coder-decoder, operating at a data rate arbitrarily close to the worst-case topological entropy, is described.","PeriodicalId":162317,"journal":{"name":"Proceedings of the 23rd International Conference on Hybrid Systems: Computation and Control","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130702429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Reachability analysis for hybrid systems with nonlinear guard sets 非线性保护组混合系统的可达性分析
Niklas Kochdumper, M. Althoff
{"title":"Reachability analysis for hybrid systems with nonlinear guard sets","authors":"Niklas Kochdumper, M. Althoff","doi":"10.1145/3365365.3382194","DOIUrl":"https://doi.org/10.1145/3365365.3382194","url":null,"abstract":"Reachability analysis is one of the most important methods for formal verification of hybrid systems. The main difficulty for hybrid system reachability analysis is to calculate the intersection between reachable set and guard sets. While there exist several approaches for guard sets defined by hyperplanes or polytopes, only few methods are able to handle nonlinear guard sets. In this work we present a novel approach to tightly enclose the intersections of reachable sets with nonlinear guard sets. One major advantage of our method is its polynomial complexity with respect to the system dimension, which makes it applicable for high-dimensional systems. Furthermore, our approach can be combined with different reachability algorithms for continuous systems due to its modular design. We demonstrate the advantages of our novel approach compared to existing methods with numerical examples.","PeriodicalId":162317,"journal":{"name":"Proceedings of the 23rd International Conference on Hybrid Systems: Computation and Control","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114892404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 16
A deontic logic analysis of autonomous systems' safety 自主系统安全性的道义逻辑分析
Colin Shea-Blymyer, Houssam Abbas
{"title":"A deontic logic analysis of autonomous systems' safety","authors":"Colin Shea-Blymyer, Houssam Abbas","doi":"10.1145/3365365.3382203","DOIUrl":"https://doi.org/10.1145/3365365.3382203","url":null,"abstract":"We consider the pressing question of how to model, verify, and ensure that autonomous systems meet certain obligations (like the obligation to respect traffic laws), and refrain from impermissible behavior (like recklessly changing lanes). Temporal logics are heavily used in autonomous system design; however, as we illustrate here, temporal (alethic) logics alone are inappropriate for reasoning about obligations of autonomous systems. This paper proposes the use of Dominance Act Utilitarianism (DAU), a deontic logic of agency, to encode and reason about obligations of autonomous systems. We use DAU to analyze Intel's Responsibility-Sensitive Safety (RSS) proposal as a real-world case study. We demonstrate that DAU can express well-posed RSS rules, formally derive undesirable consequences of these rules, illustrate how DAU could help design systems that have specific obligations, and how to model-check DAU obligations.","PeriodicalId":162317,"journal":{"name":"Proceedings of the 23rd International Conference on Hybrid Systems: Computation and Control","volume":"36 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114192971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Dynamics-aware subspace identification for decomposed aggregation in the reachability analysis of hybrid automata 混合自动机可达性分析中分解聚合的动态感知子空间识别
V. S. E. Hakim, M. Bekooij
{"title":"Dynamics-aware subspace identification for decomposed aggregation in the reachability analysis of hybrid automata","authors":"V. S. E. Hakim, M. Bekooij","doi":"10.1145/3365365.3382200","DOIUrl":"https://doi.org/10.1145/3365365.3382200","url":null,"abstract":"Hybrid automata are an emerging formalism used to model sampled-data control Cyber-Physical Systems (CPS), and analyze their behavior using reachability analysis. This is because hybrid automata provide a richer and more flexible modeling framework, compared to traditional approaches. However, modern state-of-the-art tools struggle to analyze such systems, due to the computational complexity of the reachability algorithm, and due to the introduced overapproximation error. These shortcomings are largely attributed (but not limited) to the aggregation of sets. In this paper we propose a subspace identification approach for decomposed aggregation in the reachability analysis of hybrid automata with linear dynamics. Our key contribution is the observation that the choice of a good subspace basis does not only depend on the sets being aggregated, but also on the continuous-time dynamics of an automaton. With this observation in mind, we present a dynamics-aware sub-space identification algorithm that we use to construct tight decomposed convex hulls for the aggregated sets. Our approach is evaluated on two practically relevant hybrid automata models of sampled-data CPS that have been shown to be difficult to analyze by modern state-of-the-art tools. Specifically, we show that for these models our approach can improve the accuracy of the reachable set by up-to 10 times when compared to standard Principal Component Analysis (PCA), for which finding a fixed point is not guaranteed. We also show that while the computational complexity is increased, a fixed-point is found earlier.","PeriodicalId":162317,"journal":{"name":"Proceedings of the 23rd International Conference on Hybrid Systems: Computation and Control","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125568168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Statistical verification of learning-based cyber-physical systems 基于学习的网络物理系统的统计验证
Mojtaba Zarei, Yu Wang, M. Pajic
{"title":"Statistical verification of learning-based cyber-physical systems","authors":"Mojtaba Zarei, Yu Wang, M. Pajic","doi":"10.1145/3365365.3382209","DOIUrl":"https://doi.org/10.1145/3365365.3382209","url":null,"abstract":"The use of Neural Network (NN)-based controllers has attracted significant attention in recent years. Yet, due to the complexity and non-linearity of such NN-based cyber-physical systems (CPS), existing verification techniques that employ exhaustive state-space search, face significant scalability challenges; this effectively limits their use for analysis of real-world CPS. In this work, we focus on the use of Statistical Model Checking (SMC) for verifying complex NN-controlled CPS. Using an SMC approach based on Clopper-Pearson confidence levels, we verify from samples specifications that are captured by Signal Temporal Logic (STL) formulas. Specifically, we consider three CPS benchmarks with varying levels of plant and controller complexity, as well as the type of considered STL properties - reachability property for a mountain car, safety property for a bipedal robot, and control performance of the closed-loop magnet levitation system. On these benchmarks, we show that SMC methods can be successfully used to provide high-assurance for learning-based CPS.","PeriodicalId":162317,"journal":{"name":"Proceedings of the 23rd International Conference on Hybrid Systems: Computation and Control","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127893717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 21
Formal verification of braking while swerving in automobiles 汽车转向时制动的正式验证
A. Abhishek, Harry Sood, Jean-Baptiste Jeannin
{"title":"Formal verification of braking while swerving in automobiles","authors":"A. Abhishek, Harry Sood, Jean-Baptiste Jeannin","doi":"10.1145/3365365.3382217","DOIUrl":"https://doi.org/10.1145/3365365.3382217","url":null,"abstract":"Many vehicle accidents result from collision with foreign objects. Automatic and provably safe collision avoidance systems are thus of prime importance to the automobile industry. Previous work on formally verifying car collision avoidance maneuvers typically only focuses on braking-only or swerving-only maneuvers. In this work, we study combined braking and swerving maneuvers and establish formally verified conditions under which safety from collision is ensured. One major constrain in performing such joint maneuvers is that a vehicle's tires have limited traction which can be used either for braking or swerving. So in essence, a combined maneuver can trade off braking ability for turning when it is advantageous to do so and vice-versa. In this work, we study the full continuous range of combined maneuvers, from maximal turning with little braking to maximal braking with little turning. We use a unicycle model with Ackermann's steering for the car's motion, and the circle of traction forces to model the trade-off between braking and swerving. Resulting vehicle kinematics are formulated as a hybrid program in differential dynamic logic dL. We use the automated theorem prover KeYmaera X to formally verify the correctness of the collision avoidance property. This verification provides a mathematical guarantee that a given maneuver can prevent the car from collision with obstacles under certain conditions. The employed method is generic with a purely symbolic model and, thus, can be applied to verify other types of collision avoidance systems exhibiting richer behaviour.","PeriodicalId":162317,"journal":{"name":"Proceedings of the 23rd International Conference on Hybrid Systems: Computation and Control","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131086932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Local lipschitzness of reachability maps for hybrid systems with applications to safety 具有安全应用的混合系统可达性图的局部lipschitzness
M. Maghenem, R. Sanfelice
{"title":"Local lipschitzness of reachability maps for hybrid systems with applications to safety","authors":"M. Maghenem, R. Sanfelice","doi":"10.1145/3365365.3382215","DOIUrl":"https://doi.org/10.1145/3365365.3382215","url":null,"abstract":"Motivated by the safety problem, several definitions of reachability maps, for hybrid dynamical systems, are introduced. It is well established that, under certain conditions, the solutions to continuous-time systems depend continuously with respect to initial conditions. In such setting, the reachability maps considered in this paper are locally Lipschitz (in the Lipschitz sense for set-valued maps) when the right-hand side of the continuous-time system is locally Lipschitz. However, guaranteeing similar properties for reachability maps for hybrid systems is much more challenging. Examples of hybrid systems for which the reachability maps do not depend nicely with respect to their arguments, in the Lipschitz sense, are introduced. With such pathological cases properly identified, sufficient conditions involving the data defining a hybrid system assuring Lipschitzness of the reachability maps are formulated. As an application, the proposed conditions are shown to be useful to significantly improve an existing converse theorem for safety given in terms of barrier functions. Namely, for a class of safe hybrid systems, we show that safety is equivalent to the existence of a locally Lipschitz barrier function. Examples throughout the paper illustrate the results.","PeriodicalId":162317,"journal":{"name":"Proceedings of the 23rd International Conference on Hybrid Systems: Computation and Control","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129846054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信