Convergence of ant colony multi-agent swarms

Daniel Jarne Ornia, M. Mazo
{"title":"Convergence of ant colony multi-agent swarms","authors":"Daniel Jarne Ornia, M. Mazo","doi":"10.1145/3365365.3382199","DOIUrl":null,"url":null,"abstract":"Ant Colony algorithms are a set of biologically inspired algorithms used commonly to solve distributed optimization problems. Convergence has been proven in the context of optimization processes, but these proofs are not applicable in the framework of robotic control. In order to use Ant Colony algorithms to control robotic swarms, we present in this work more general results that prove asymptotic convergence of a multi-agent Ant Colony swarm moving in a weighted graph.","PeriodicalId":162317,"journal":{"name":"Proceedings of the 23rd International Conference on Hybrid Systems: Computation and Control","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 23rd International Conference on Hybrid Systems: Computation and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3365365.3382199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Ant Colony algorithms are a set of biologically inspired algorithms used commonly to solve distributed optimization problems. Convergence has been proven in the context of optimization processes, but these proofs are not applicable in the framework of robotic control. In order to use Ant Colony algorithms to control robotic swarms, we present in this work more general results that prove asymptotic convergence of a multi-agent Ant Colony swarm moving in a weighted graph.
蚁群多智能体群体的收敛性
蚁群算法是一组受生物学启发的算法,通常用于解决分布式优化问题。在优化过程的背景下已经证明了收敛性,但这些证明并不适用于机器人控制的框架。为了使用蚁群算法来控制机器人群体,我们在这项工作中给出了更一般的结果,证明了多智能体蚁群在加权图中移动的渐近收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信