Muhammad Sabbtain Abbas, Bilal Jehanzaib, Shahzad Hussain, Abid Mahmood, Riaz Ahmad
{"title":"Mass spectrometric study of low energy Cs+ ion-induced sputtered fragmentation of PADC polymer","authors":"Muhammad Sabbtain Abbas, Bilal Jehanzaib, Shahzad Hussain, Abid Mahmood, Riaz Ahmad","doi":"10.1002/jms.5002","DOIUrl":"10.1002/jms.5002","url":null,"abstract":"<p>In this study, low-energy cesium (Cs<sup>+</sup>) ion-induced sputtered fragmentation of poly allyl diglycol carbonate (PADC) was investigated using mass spectrometry. The collision-induced dissociation mechanism revealed emission of various fragments, including monoatomic (H<sup>−</sup>, C<sub>1</sub><sup>−</sup>, O<sub>1</sub><sup>−</sup>), diatomic (C<sub>2</sub><sup>−</sup>), and multiatomic (C<sub>3</sub><sup>−</sup>, CO<sub>2</sub><sup>−</sup>, C<sub>2</sub>O<sub>2</sub><sup>−</sup>, C<sub>3</sub>O<sub>2</sub><sup>−</sup>) species within the Cs<sup>+</sup> ion energy range of 1–5 keV. The anion current of these fragments exhibited a linear increase with rising incident Cs<sup>+</sup> ion energy, indicating a corresponding rise in fragment abundance. Analysis of normalized yield indicated that at 1 keV incident energy, the dominant fragment was monoatomic hydrogen (H<sup>−</sup>), followed by diatomic carbon (C<sub>2</sub><sup>−</sup>), monoatomic carbon (C<sub>1</sub><sup>−</sup>), and monoatomic oxygen (O<sub>1</sub><sup>−</sup>). Although C<sub>2</sub><sup>−</sup> remained dominant up to 5 keV, other fragments exhibited varying normalized yields at different ion energy steps. The sputter yield estimation revealed that monoatomic hydrogen (H<sup>−</sup>) and diatomic carbon (C<sub>2</sub><sup>−</sup>) exhibited the highest yields, increasing exponentially beyond 3 keV, while multiatomic fragments like C<sub>3</sub><sup>−</sup>, CO<sub>2</sub><sup>−</sup>, C<sub>2</sub>O<sub>2</sub><sup>−</sup>, and C<sub>3</sub>O<sub>2</sub><sup>−</sup> displayed the lowest yields. The sputter dissociation mechanism pointed to dehydrogenation, chain scission, and bond breakage as the primary processes during low-energy Cs<sup>+</sup> ion impact. Postsputtering Scanning Electron Mircoscope (SEM) micrographs show craters, pits, and micropores on the PADC surface, indicating significant surface degradation. X-ray Diffraction (XRD) spectra exhibited reduced diffraction intensity, while Fourier Transform Infrared Spectroscopy (FTIR) analysis indicated the absence of molecular bands in the IR spectrum, confirming extensive surface damage due to Cs<sup>+</sup> ion-induced sputtering.</p>","PeriodicalId":16178,"journal":{"name":"Journal of Mass Spectrometry","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139681162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bethany Lowe, Alejandro L. Cardona, Juana Salas, Andras Bodi, Paul M. Mayer, Maxi A. Burgos Paci
{"title":"What a difference a chlorine makes: The remarkable unimolecular ion chemistry of phenyl formate and phenyl chloroformate","authors":"Bethany Lowe, Alejandro L. Cardona, Juana Salas, Andras Bodi, Paul M. Mayer, Maxi A. Burgos Paci","doi":"10.1002/jms.5004","DOIUrl":"10.1002/jms.5004","url":null,"abstract":"<p>Imaging photoelectron photoion coincidence (iPEPICO) spectroscopy and tandem mass spectrometry were employed to explore the ionisation and dissociative ionisation of phenyl formate (PF) and phenyl chloroformate (PCF). The threshold photoelectron spectra of both compounds are featureless and lack a definitive origin transition, owing to the internal rotation of the formate functional group relative to the benzene ring, active upon ionisation. CBS-QB3 calculations yield ionisation energies of 8.88 and 9.03 eV for PF and PCF, respectively. Ionised PF dissociates by the loss of CO via a transition state composed of a phenoxy cation and HCO moieties. The dissociation of PCF ions involves the competing losses of CO (<i>m</i>/<i>z</i> 128/130), Cl (<i>m</i>/<i>z</i> 121) and CO<sub>2</sub> (<i>m</i>/<i>z</i> 112/114), with Cl loss also shown to occur from the second excited state in a non-statistical process. The primary CO- and Cl-loss fragment ions undergo sequential reactions leading to fragment ions at <i>m</i>/<i>z</i> 98 and 77. The mass-analysed ion kinetic energy (MIKE) spectrum of PCF<sup>+</sup> showed that the loss of CO<sub>2</sub> occurs with a large reverse energy barrier, which is consistent with the computationally derived minimum energy reaction pathway.</p>","PeriodicalId":16178,"journal":{"name":"Journal of Mass Spectrometry","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139681163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ardita Kurtishaj, Marko Žumer, Vincenc Nemanič, Uroš Cvelbar
{"title":"Addressing challenges with evaluating hydrogen-selective membrane performance by quadrupole mass spectrometry","authors":"Ardita Kurtishaj, Marko Žumer, Vincenc Nemanič, Uroš Cvelbar","doi":"10.1002/jms.5001","DOIUrl":"10.1002/jms.5001","url":null,"abstract":"<p>Hydrogen separation using nanostructured membranes has gained research attention because of its potential to produce high-purity hydrogen by separating gases at the molecular level. Quadrupole mass spectrometry (QMS) is one method to evaluate these membranes' effectiveness in separating hydrogen from gas mixtures. However, quantifying gases in a mixture with QMS is challenging, especially when heavier gas ions interfere with a light gas ion, resulting in lower quantification accuracy. This study addresses this challenge by presenting a detailed calibration procedure that significantly improves hydrogen quantification accuracy up to a factor of 2.5. CO and CO<sub>2</sub> were chosen as interfering gases because they are commonly released in conventional hydrogen production processes. By carefully evaluating the performance of these membranes, new opportunities for hydrogen separation may be realized.</p>","PeriodicalId":16178,"journal":{"name":"Journal of Mass Spectrometry","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jms.5001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139667385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kalpani H. Wijesinghe, Christopher Hood, Daniell Mattern, Laurence A. Angel, Amala Dass
{"title":"Ion mobility–tandem mass spectrometry of bulky tert-butyl thiol ligated gold nanoparticles","authors":"Kalpani H. Wijesinghe, Christopher Hood, Daniell Mattern, Laurence A. Angel, Amala Dass","doi":"10.1002/jms.4998","DOIUrl":"10.1002/jms.4998","url":null,"abstract":"<p>Gold nanoparticles (AuNPs) synthesized in the 1–3 nm range have a specific number of gold core atoms and outer protecting ligands. They have become one of the “hot topics” in recent decades because of their interesting physical and chemical properties. The characterization of their structures is usually achieved by crystal X-ray diffraction although the structures of some AuNPs remain unknown because they have not been successfully crystallized. An alternative method for studying the structure of AuNPs is electrospray ionization–ion mobility–tandem mass spectrometry (ESI-IM-MSMS). This research evaluated how effectively ESI-IM-MSMS using the commercially available Waters Synapt XS instrument yielded useful structural information from two AuNPs; Au<sub>23</sub>(S-<i>t</i>Bu)<sub>16</sub> and Au<sub>30</sub>(S-<i>t</i>Bu)<sub>18</sub>. The study used the maximum range of available collision energies along with ion mobility separation to measure the energy-dependence of the product ions and their drift times which is a measure of their spatial size. For Au<sub>23</sub>(S-<i>t</i>Bu)<sub>16</sub>, the dissociation gave the masses of the outer protecting monomeric [RS–Au–SR] and trimeric [SR–Au–SR–Au–SR–Au–SR] staples where R = <i>t</i>Bu, and complete dissociation of the outer layer Au and <i>t</i>Bu groups to reveal the Au<sub>15</sub>S<sub>8</sub> core. For Au<sub>30</sub>(S-<i>t</i>Bu)<sub>18</sub>, the dissociation products was primarily through the loss of the partial ligands S-<i>t</i>Bu and <i>t</i>Bu from the outer protecting layer and the loss of single Au<sub>4</sub>(S-<i>t</i>Bu)<sub>4</sub> unit. These results showed the that ESI-IM-MSMS analysis of the smaller Au<sub>23</sub>(S-<i>t</i>Bu)<sub>16</sub> gave information on all it major structural components whereas for Au<sub>30</sub>(S-<i>t</i>Bu)<sub>18</sub>, the overall structural information was limited to the ligands of the outer layer.</p>","PeriodicalId":16178,"journal":{"name":"Journal of Mass Spectrometry","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139542557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Samira Salihovic, Linda Dunder, Monica Lind, Lars Lind
{"title":"Assessing the performance of a targeted absolute quantification isotope dilution liquid chromatograhy tandem mass spectrometry assay versus a commercial nontargeted relative quantification assay for detection of three major perfluoroalkyls in human blood","authors":"Samira Salihovic, Linda Dunder, Monica Lind, Lars Lind","doi":"10.1002/jms.4999","DOIUrl":"10.1002/jms.4999","url":null,"abstract":"<p>Isotope dilution ultrahigh-performance liquid chromatography coupled to tandem mass spectrometry (UHPLC–MS/MS) is commonly used for trace analysis of polyfluoroalkyl and perfluoroalkyl substances (PFAS) in difficult matrices. Commercial nontargeted analysis of major PFAS where relative concentrations are obtained cost effectively is rapidly emerging and is claimed to provide comparable results to that of absolute quantification using matrix matched calibration and isotope dilution UHPLC–MS/MS. However, this remains to be demonstrated on a large scale. We aimed to assess the performance of a targeted absolute quantification isotope dilution LC–MS/MS assay versus a commercial nontargeted relative quantification assay for detection of three major PFAS in human blood. We evaluated a population-based cohort of 503 individuals. Correlations were assessed using Spearman's rank correlation coefficients (rho). Precision and bias were assessed using Bland–Altman plots. For perfluorooctane sulfonic acid, the median concentrations were 5.10 ng/mL (interquartile range [IQR] 3.50–7.24 ng/mL), the two assays correlated with rho 0.83. For perfluorooctanoic acid, the median concentrations were 2.14 ng/mL (IQR 1.60–3.0 ng/mL), the two assays correlated with rho 0.92. For perfluorohexanesulfonate, the median concentrations were 5.5 ng/mL (IQR 2.50–11.61 ng/mL), the two assays correlated with rho 0.96. The Bland–Altman statistical test showed agreement of the mean difference for the majority of samples (97–98%) between the two assays. Absolute plasma concentrations of PFAS obtained using matrix matched calibration and isotope dilution UHPLC–MS/MS show agreement with relative plasma concentrations from a nontargeted commercial platform by Metabolon. We observed striking consistency between the two assays when examining the associations of the three PFAS with cholesterol, offering additional confidence in the validity of utilizing the nontargeted approach for correlations with various health phenotypes.</p>","PeriodicalId":16178,"journal":{"name":"Journal of Mass Spectrometry","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jms.4999","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139542554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Leonardo Parasecolo, Laurentiu G. Dabija, Rani Shouk, Dani Shouk, Rodinei Augusti, Demian R. Ifa
{"title":"Application of sandpaper spray ionization mass spectrometry to comprehensively examine maple leaves infected with distinct fungi","authors":"Leonardo Parasecolo, Laurentiu G. Dabija, Rani Shouk, Dani Shouk, Rodinei Augusti, Demian R. Ifa","doi":"10.1002/jms.5000","DOIUrl":"10.1002/jms.5000","url":null,"abstract":"<p>This study describes a novel application for sandpaper spray ionization mass spectrometry (SPS-MS), to examine the surface of maple tree (<i>Acer</i> sp.) leaves. By comparing mass spectrometry fingerprints, healthy leaves from those infected with powdery mildew and <i>Rhytisma acerinum</i> were distinguished. Leaves were grated with sandpaper, cut into triangles, and placed before the mass spectrometer, with the addition of a methanol-formic acid solution. Multivariate statistical analysis categorized the samples into three groups. Overall, SPS-MS effectively analyzed leaves with infectious microorganisms, potentially aiding in the creation of fungal identification databanks.</p>","PeriodicalId":16178,"journal":{"name":"Journal of Mass Spectrometry","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jms.5000","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139542549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ago Mrsa, Greta Nardini, Trine Grønhaug Halvorsen, Bernd Thiede, Léon Reubsaet
{"title":"One-step functionalization of paper and simplified antibody immobilization for on-the-spot immunocapture from dried serum in liquid chromatography-tandem mass spectrometry based targeted protein determination","authors":"Ago Mrsa, Greta Nardini, Trine Grønhaug Halvorsen, Bernd Thiede, Léon Reubsaet","doi":"10.1002/jms.4989","DOIUrl":"10.1002/jms.4989","url":null,"abstract":"<p>This work aimed to simplify and improve the process of binding monoclonal antibodies (mAbs) covalently to filter paper for use in dried blood spot sampling, enabling instant capture of protein biomarkers for targeted protein determination. Incorporating the necessary immunocapture sample preparation step in the initial sampling stage saves time and reduces the workload. The biomarker human chorionic gonadotropin (hCG) was used as the model analyte. The antibody-based paper samplers were prepared by functionalizing paper discs (6 mm) through a simple reaction using divinyl sulfone (DVS). After DVS activation, the paper discs were incubated with E27 hCG mAbs, followed by 0.05% tween/phosphate buffer saline to block the surface. After sample application and drying, the discs only needed to be washed before tryptic digestion and finally analysed on a nanoliquid chromatography–tandem mass spectrometry system. The finished DVS-mAbs samplers could selectively capture hCG (100 ng/mL) from human serum, with a recovery of 50%. Sample clean-up reduced the number of identified proteins from 132 to 82 before and after wash, respectively, with a 70% reduction in serum albumin signal while still retaining hCG on the sampler during the washing protocol. An evaluation of the samplers revealed excellent linearity (<i>R</i><sup>2</sup> = 0.9995) for hCG in serum with relative standard deviations below 15%. This work has presented the first ever reported paper samplers immobilized with antibodies utilizing DVS chemistry, showing promise in the future of paper-based sampling.</p>","PeriodicalId":16178,"journal":{"name":"Journal of Mass Spectrometry","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jms.4989","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139417316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Chromatographic–mass spectrometric analysis of peptidic analytes (2–10 kDa) in doping control urine samples","authors":"Andreas Thomas, Katja Walpurgis, Mario Thevis","doi":"10.1002/jms.4996","DOIUrl":"10.1002/jms.4996","url":null,"abstract":"<p>Peptides with a molecular mass between 2 and 10 kDa that are prohibited in elite sports usually require dedicated sample preparation and mass spectrometric detection that commonly cannot be combined with other (lower molecular mass) substances. In most instances, the physicochemical differences are too significant to allow for a generic analytical procedure. A simplification of established and comparably complex analytical approaches is therefore desirable and has been accomplished in the context of this study. With urine samples representing still the most frequently collected doping control specimens, efficient extraction of peptidic analytes from this matrix was a major goal of this method, as demonstrated for the included compounds such as insulins (human, lispro, aspart, glulisine, tresiba, glargine metabolite, bovine insulin, porcine insulin), growth hormone-releasing hormones (sermorelin, CJC-1295, tesamorelin) incl. their respective metabolites, insulin-like-growth factors (long-R<sub>3</sub>-IGF-I, R<sub>3</sub>-IGF-I, des<sub>1–3</sub>-IGF-I), synacthen, gonadorelin and mechano growth factors (human MGF, MGF-Goldspink). Sample preparation and detection are controlled by five internal standards, covering all five included peptide drug categories. Nearly all requirements of the recent technical documents from the World Anti-Doping Agency (WADA) considering their minimum required performance levels (MRPL) are fulfilled, and the method was validated for its utilisation as initial testing procedure in doping controls. Finally, the approach was applied to authentic post-administration study urine samples (for insulins and gonadorelin) in order to provide proof of principle.</p>","PeriodicalId":16178,"journal":{"name":"Journal of Mass Spectrometry","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jms.4996","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139403207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Combining surface-enhanced Raman spectroscopy and paper spray mass spectrometry for the identification and confirmation of psychotropic substances in alcoholic beverages","authors":"Marina Jurisch, Cristiano Fantini, Rodinei Augusti, Mariana Ramos Almeida","doi":"10.1002/jms.4997","DOIUrl":"10.1002/jms.4997","url":null,"abstract":"<p>Criminal practices in which an individual becomes vulnerable and prone to sexual assault after ingesting drinks spiked with doping substances have become a social concern globally. As forensic protocols require a multi-tiered strategy for chemical evidentiary analysis, the backlog of evidence has become a significant problem in the community. Herein, a fast, sensible, and complementary dual analytical methodology was developed using a single commercial paper substrate for surface-enhanced Raman spectroscopy (SERS) and paper spray mass spectrometry (PS-MS) analysis to identify psychotropic substances added to alcoholic beverages irrefutably. To study and investigate this criminal practice, pharmaceutical formulations containing distinct psychotropic substances (zolpidem, clonazepam, diazepam, and ketamine) were added to drinks typically consumed at parties and festivals (Pilsen beer, açaí Catuaba®, gin tonic, and vodka mixed with Coca-Cola Zero®). A simple liquid–liquid extraction with a low-temperature partitioning (LLE-LTP) procedure was applied to the drinks and effectively minimized matrix effects. As a preliminary analysis, SERS spectra combined with Hierarchical Clustering Analysis (HCA) provided sufficient information to investigate the samples further. The presence of the protonated species for the psychotropic substances in the spiked drinks was readily verified in the mass spectra and confirmed by tandem mass spectrometry. Finally, the results demonstrate the potential of this methodology to be easily implemented into the routine of forensic laboratories and to be further employed at harm reduction tends at parties and festivals to detect contaminated beverages promptly and irrefutably as an efficient tool to prevent such crimes.</p>","PeriodicalId":16178,"journal":{"name":"Journal of Mass Spectrometry","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139037796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Does deprotonated benzoic acid lose carbon monoxide in collision-induced dissociation?","authors":"Yingying Liu, Xue Wang, Danyang Zhang, Chen Wang, Haijiao Xie, Hongping Chen, Yunfeng Chai","doi":"10.1002/jms.4990","DOIUrl":"10.1002/jms.4990","url":null,"abstract":"<p>Decarboxylation is known to be the major fragmentation pathway for the deprotonated carboxylic acids in collision-induced dissociation (CID). However, in the CID mass spectrum of deprotonated benzoic acid (<i>m/z</i> 121) recorded on a Q-orbitrap mass spectrometer, the dominant peak was found to be <i>m/z</i> 93 instead of the anticipated <i>m/z</i> 77. Based on theoretical calculations, <sup>18</sup>O-isotope labeling and MS<sup>3</sup> experiments, we demonstrated that the fragmentation of benzoate anion begins with decarboxylation, but the initial phenide anion (<i>m/z</i> 77) can react with trace O<sub>2</sub> in the mass analyzer to produce phenolate anion (<i>m/z</i> 93) and other oxygen-containing ions. Thus oxygen adducts should be considered when annotating the MS/MS spectra of benzoic acids.</p>","PeriodicalId":16178,"journal":{"name":"Journal of Mass Spectrometry","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139037797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}