Journal of Intelligent Material Systems and Structures最新文献

筛选
英文 中文
Modeling and design of magnetorheological elastomer isolator system for an active control solution to reduce the vibration transmission in elevator context 基于主动控制方案的磁流变弹性体隔振系统建模与设计
IF 2.7 3区 材料科学
Journal of Intelligent Material Systems and Structures Pub Date : 2023-08-05 DOI: 10.1177/1045389x231188608
Aitor Erenchun, L. Kari, B. Blanco, Bochao Wang, L. Irazu, N. Gil-Negrete
{"title":"Modeling and design of magnetorheological elastomer isolator system for an active control solution to reduce the vibration transmission in elevator context","authors":"Aitor Erenchun, L. Kari, B. Blanco, Bochao Wang, L. Irazu, N. Gil-Negrete","doi":"10.1177/1045389x231188608","DOIUrl":"https://doi.org/10.1177/1045389x231188608","url":null,"abstract":"The attenuation of the structure-borne sound caused by elevator systems in residential buildings is a priority for manufacturers. This work develops a model of an active control isolation system for the vibrations produced by the elevator drive machine. This solution proposes the substitution of conventional passive isolators by new ones made of a magnetorheological elastomer (MRE), a smart material whose modulus can be modified by applying a magnetic field. To guide the design process, MRE isolators are fabricated and experimentally tested statically and dynamically in compression mode. Subsequently, the parameters of the MRE are fitted to build a nonlinear material sub-model that accounts for the frequency, amplitude, and magnetic field dependency. Afterward, a global model of the elevator drive machine vibration isolation system is developed, which incorporates the drive machine, structure, and MRE-based isolator. To enhance vibration isolation, two active control strategies are designed and assessed. Simulation results predict that active control systems based on MRE isolators improve vibration isolation as compared to traditional passive systems. The excitation amplitude and frequency, along with the control strategy and magnetization of the MRE isolators are shown to be critical parameters when designing an active control solution.","PeriodicalId":16121,"journal":{"name":"Journal of Intelligent Material Systems and Structures","volume":"69 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72725456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Validation and optimization of two models for the magnetic restoring forces using a multi-stable piezoelectric energy harvester. 利用多稳定压电能量收集器验证和优化磁恢复力的两个模型。
IF 2.4 3区 材料科学
Journal of Intelligent Material Systems and Structures Pub Date : 2023-08-01 Epub Date: 2023-01-21 DOI: 10.1177/1045389X221151064
Haining Li, Kefu Liu, Jian Deng, Bing Li
{"title":"Validation and optimization of two models for the magnetic restoring forces using a multi-stable piezoelectric energy harvester.","authors":"Haining Li, Kefu Liu, Jian Deng, Bing Li","doi":"10.1177/1045389X221151064","DOIUrl":"10.1177/1045389X221151064","url":null,"abstract":"<p><p>This article presents a tunable multi-stable piezoelectric energy harvester. The apparatus consists of a stationary magnet and a cantilever beam whose free end is attached by an assembly of two cylindrical magnets that can be moved along the beam and a small cylindrical magnet that is fixed at the beam tip. By varying two parameters, the system can assume three stability states: tri-stable, bi-stable, and mono-stable, respectively. The developed apparatus is used to validate two models for the magnetic restoring force: the equivalent magnetic point dipole approach and the equivalent magnetic 2-point dipole approach. The study focuses on comparing the accuracy of the two models for a wide range of the tuning parameters. The restoring forces of the apparatus are determined dynamically and compared with their analytical counterparts based on each of the models. To improve the model accuracy, a model optimization is carried out by using the multi-population genetic algorithm. With the optimum models, the parametric sensitivity of each of the models is investigated. The stability state region is generated by using the optimum second model.</p>","PeriodicalId":16121,"journal":{"name":"Journal of Intelligent Material Systems and Structures","volume":"34 14","pages":"1688-1701"},"PeriodicalIF":2.4,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10375009/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10294208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design optimization and experimental evaluation of a large capacity magnetorheological damper with annular and radial fluid gaps. 带环空和径向液隙的大容量磁流变阻尼器设计优化及实验评价。
IF 2.7 3区 材料科学
Journal of Intelligent Material Systems and Structures Pub Date : 2023-08-01 DOI: 10.1177/1045389X221151075
Moustafa Abdalaziz, Ramin Sedaghati, Hossein Vatandoost
{"title":"Design optimization and experimental evaluation of a large capacity magnetorheological damper with annular and radial fluid gaps.","authors":"Moustafa Abdalaziz,&nbsp;Ramin Sedaghati,&nbsp;Hossein Vatandoost","doi":"10.1177/1045389X221151075","DOIUrl":"https://doi.org/10.1177/1045389X221151075","url":null,"abstract":"<p><p>This paper presents an optimal design of a large-capacity Magnetorheological (MR) damper suitable for off-road vehicle applications. The damper includes an MR fluid bypass valve with both annular and radial gaps to generate a large damping force and dynamic range. An analytical model of the proposed damper is formulated based on the Bingham plastic model of MR fluids. To establish a relationship between the applied current and magnetic flux density in the MR fluid active regions, an analytical magnetic circuit is formulated and further compared with a magnetic finite element model. The MR valve geometrical parameters are subsequently optimized to maximize the damper dynamic range under specific volume and magnetic field constraints. The optimized MR valve can theoretically generate off-state and on-state damping forces of 1.1 and 7.41 kN, respectively at 12.5 mm/s damper piston velocity. The proposed damper has been also designed to allow a large piston stroke of 180 mm. The proof-of-concept of the optimally designed MR damper was subsequently fabricated and experimentally characterized to investigate its performance and validate the models. The results show that the proposed MR damper is able to provide large damping forces with a high dynamic range under different excitation conditions.</p>","PeriodicalId":16121,"journal":{"name":"Journal of Intelligent Material Systems and Structures","volume":"34 14","pages":"1646-1663"},"PeriodicalIF":2.7,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10375004/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10294207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Broadband energy harvesting in a two-degree-of-freedom nonlinear system without internal resonance 无内共振二自由度非线性系统的宽带能量收集
IF 2.7 3区 材料科学
Journal of Intelligent Material Systems and Structures Pub Date : 2023-07-31 DOI: 10.1177/1045389x231189443
Xiao-Fang Zhang, Le Yang, Wen-an Jiang, X. Jing, Liqun Chen
{"title":"Broadband energy harvesting in a two-degree-of-freedom nonlinear system without internal resonance","authors":"Xiao-Fang Zhang, Le Yang, Wen-an Jiang, X. Jing, Liqun Chen","doi":"10.1177/1045389x231189443","DOIUrl":"https://doi.org/10.1177/1045389x231189443","url":null,"abstract":"In this paper, we propose a novel two-degree-of-freedom (TDOF) nonlinear energy harvester without internal resonance to realize broadband harvesting characteristic. To show the performance, a TDOF nonlinear electromagnetic harvester is designed. The electromechanical coupling system is established and solved by adopting the harmonic balance method. The modulation equations are constructed, the first-order harmonic solutions of the system are obtained and the frequency response curves of the displacement and current are plotted. The advantage of the proposed harvester is compared to the conventional single-degree-of-freedom (SDOF) nonlinear model and the corresponding TDOF linear system, the results achieve that the proposed scheme can enhance the bandwidth of the harvesting energy. Furthermore, the influences of system parameters on the response are discussed. The accuracy of the first-order harmonic results is revealed by numerical simulations. To further demonstrate the accuracy of analytical solutions, the finite element simulation is constructed in ANSYS finite element analysis (FEA) software. The performance predictions from the analytical solutions are compared with results from FEA. It is convincingly demonstrated that periodic solutions have a degree of good consistency for the behavior of frequency response curves.","PeriodicalId":16121,"journal":{"name":"Journal of Intelligent Material Systems and Structures","volume":"52 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87222271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Time-harmonic loading over a piezoelectric layered half-space 压电层状半空间上的时谐载荷
IF 2.7 3区 材料科学
Journal of Intelligent Material Systems and Structures Pub Date : 2023-07-30 DOI: 10.1177/1045389x231188604
S. Nirwal, Chih‐Ping Lin, Q. K. Tran, E. Pan
{"title":"Time-harmonic loading over a piezoelectric layered half-space","authors":"S. Nirwal, Chih‐Ping Lin, Q. K. Tran, E. Pan","doi":"10.1177/1045389x231188604","DOIUrl":"https://doi.org/10.1177/1045389x231188604","url":null,"abstract":"Mathematical modeling of multilayered piezoelectric (PE) ceramic substantially acquires attention due to its distinctive advantages of fast response time, positioning, optical systems, vibration feedback, and sensors, such as deformation and vibration control. As such, fundamental solution of a PE structure is essential. This paper presents three-dimensional (3D) static and dynamic solutions (i.e. Green’s functions) in a multilayered transversally isotropic (TI) PE layered half-space. The uniform vertical mechanical load, vertical electrical displacement, and horizontal mechanical load are applied on the surface of the structure. The novel Fourier-Bessel series (FBS) system of vector functions (which is computationally more powerful and streamlined) and the dual-variable and position (DVP) method are employed to solve the related boundary-value problem. Two systems of first-order ordinary differential equations (i.e. the LM- and N-types) are obtained in terms of the FBS system of vector functions, with these expansion coefficients being the Love numbers. A recursive relation for the expansion coefficients is established by using DVP method that facilitates the combination of two neighboring layers into a new one and minimizes the computational effort to a great extent. The corresponding physical-domain solutions are acquired by applying the appropriate boundary/interface conditions. Several numerical examples pertaining to static and dynamic response are solved, and the efficiency and accuracy of the proposed solutions are validated with the existing results for the reduced cases. The solutions provided could be beneficial to better developments of PE materials, configurations, fabrication, and applications in the future.","PeriodicalId":16121,"journal":{"name":"Journal of Intelligent Material Systems and Structures","volume":"2 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90478196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling and performance analysis of a curve-shaped based doubly clamped piezoelectric energy harvester (CD-PEH) 曲线型双钳位压电能量采集器(CD-PEH)建模与性能分析
IF 2.7 3区 材料科学
Journal of Intelligent Material Systems and Structures Pub Date : 2023-07-29 DOI: 10.1177/1045389x231181493
Xiaoyu Chen, Xuhui Zhang, Yan Guo, Fulin Zhu
{"title":"Modeling and performance analysis of a curve-shaped based doubly clamped piezoelectric energy harvester (CD-PEH)","authors":"Xiaoyu Chen, Xuhui Zhang, Yan Guo, Fulin Zhu","doi":"10.1177/1045389x231181493","DOIUrl":"https://doi.org/10.1177/1045389x231181493","url":null,"abstract":"In this paper, a curve-shaped based doubly clamped piezoelectric energy harvester (CD-PEH) is explored for improving the energy harvesting performance. The harvester consists of a composed beam constructed with two arc-shaped structures and a flat beam, as well as two proof masses. A method based on chained beam constraint model theory (CBCM) is first applied to build the nonlinear restoring force model of the CD-PEH, the developed analytical model is validated by the finite element analysis (FEA). Then the electromechanically coupled model for the CD-PEH is built to investigate the effect of excitation amplitudes, geometric parameters and load resistance on the output characteristics. Due to the geometric nonlinearity caused by the arc-shaped configuration, the CD-PEH orderly exhibits quasi-linear, softening nonlinear and mixed hardening & softening nonlinearity behavior with the increasing of excitation level, which could effectively extend the frequency bandwidth of the system. For the excitation of A = 8 m/s2, the effective working bandwidth of the CD-PEH is increased by 633% compared with the effective bandwidth in the case of A = 2 m/s2. Moreover, comparison experiments demonstrate that the output voltage and the effective bandwidth are increased by 225 and 450%, respectively, compared with the typical doubly-clamped piezoelectric energy harvester (T-PEH) under the same excitation amplitude. Overall, this study provides a new way and theoretical framework for the design of high-efficiency doubly clamped piezoelectric energy harvester.","PeriodicalId":16121,"journal":{"name":"Journal of Intelligent Material Systems and Structures","volume":"29 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82284396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unimorph based sensor modelling and rheological assessment of fluidic media using frequency response of improved sensor design 基于单形的传感器建模和基于改进传感器设计的频率响应的流体介质流变评估
IF 2.7 3区 材料科学
Journal of Intelligent Material Systems and Structures Pub Date : 2023-07-20 DOI: 10.1177/1045389x231188165
Shivanku Chauhan, M. Z. Ansari
{"title":"Unimorph based sensor modelling and rheological assessment of fluidic media using frequency response of improved sensor design","authors":"Shivanku Chauhan, M. Z. Ansari","doi":"10.1177/1045389x231188165","DOIUrl":"https://doi.org/10.1177/1045389x231188165","url":null,"abstract":"This work presents a hassle-free rheological assessment of fluidic media using the frequency response of a self-sensing and self-actuating piezoelectric cantilever sensor. Firstly, an analytical modelling approach for a unimorph-based cantilever sensor is derived and validated. Afterwards, the sensing performance of a rectangular cantilever sensor is improved by modifying its profile to a stepped shape. Frequency response parameters of the cantilever sensors are tracked in vacuum as well as in water, glycerin and varying concentration glycerin solution. These parameters are used to develop the calibration curves for the density and viscosity assessment of the water-glycerin solutions. The calculated density and viscosity utilizing the cantilever sensors are in good agreement with the respective values given by the standard instruments. This implies that the presented sensors can be successfully used for density and viscosity measurement of range 1000–1270 kg/m3 and 12.82–41.35 cP, respectively. The presented method is capable to simultaneously estimate the density and viscosity of the fluidic media without fully immersing the sensor in that media, which can tackle many operational troubles.","PeriodicalId":16121,"journal":{"name":"Journal of Intelligent Material Systems and Structures","volume":"2 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91196100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel traveling wave rotary ultrasonic motor with piezoelectric backup function 一种具有压电后备功能的新型行波旋转超声电机
IF 2.7 3区 材料科学
Journal of Intelligent Material Systems and Structures Pub Date : 2023-07-20 DOI: 10.1177/1045389x231187484
L. Yang, Xiaobin Hu, Mojian Yang, Yongjie Huan, Weihao Ren, Yue Xiong, Huafeng Li
{"title":"A novel traveling wave rotary ultrasonic motor with piezoelectric backup function","authors":"L. Yang, Xiaobin Hu, Mojian Yang, Yongjie Huan, Weihao Ren, Yue Xiong, Huafeng Li","doi":"10.1177/1045389x231187484","DOIUrl":"https://doi.org/10.1177/1045389x231187484","url":null,"abstract":"To fulfill high-reliability requirements for aerospace applications, a novel traveling wave rotary ultrasonic motor with a piezoelectric backup function (Backup motor) is proposed in this paper. The backup function is enabled by the addition of a set of piezoelectric ceramics (PZT). Based on the ultrasonic motor of the CSX-60, a cantilever-tooth backup motor (CTBM) is designed and fabricated. This backup motor can operate in three working modes according to the excitation settings of PZTs, namely normal mode, backup mode, and enhanced mode. The relationships between three working modes’ performances are analyzed by finite element (FE) analysis and prototype tests. The results show that backup mode, as the substitution, can nearly reach normal mode’s performance, while enhanced mode is obviously higher than others. Furthermore, a modified backup motor with straight-tooth (STBM) and different sizes of PZT is designed and tested as a supplement to verify the feasibility of the proposal. In addition, the effect of stress reduction on PZT damage is verified by extreme working experiments. The comparison between the two types of motors indicates that STBM can provide better frictional drive performance. This proposal can provide a new reference for the subsequent reliability study of ultrasonic motors.","PeriodicalId":16121,"journal":{"name":"Journal of Intelligent Material Systems and Structures","volume":"115 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86208962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling and semi-active control performance analysis of MRE isolator based on BPNN optimized by GA using different evaluation indexes 基于遗传算法优化的BPNN隔振器建模及半主动控制性能分析
IF 2.7 3区 材料科学
Journal of Intelligent Material Systems and Structures Pub Date : 2023-07-20 DOI: 10.1177/1045389x231178209
Huixing Wang, X. Huang, Tao Liu, Jionglu Wang
{"title":"Modeling and semi-active control performance analysis of MRE isolator based on BPNN optimized by GA using different evaluation indexes","authors":"Huixing Wang, X. Huang, Tao Liu, Jionglu Wang","doi":"10.1177/1045389x231178209","DOIUrl":"https://doi.org/10.1177/1045389x231178209","url":null,"abstract":"The utilization of isolation systems employing Magnetorheological Elastomer (MRE) devices holds significant promise for structural vibration applications due to their customizable stiffness and damping characteristics. However, the nonlinear dynamics inherent in MRE isolators present formidable obstacles for the establishment of accurate models and development of effective control strategies for practical implementation. In this work, the dynamic properties of a self-made MRE isolator under different loading conditions are tested and analyzed. Then the nonparametric forward model and inverse model of MRE isolator based on BPNN (back propagation neural network) are established respectively, and the GA (genetic algorithm) is used to optimize the neural structure of BPNN. The precision and accuracy of the forward and inverse model is verified by comparing the predicted and experimental data. Simulation and experimental results show that the BPNN optimized by GA can efficiently and accurately model the nonlinear behavior of MRE isolators. Based on this, we take an eight-story shear frame building based on the proposed MRE vibration isolator model as the research object and numerically studied the vibration suppression effect under the control of three typical control algorithms, that is, LQR, FC, and FC-PID. In the process of evaluating the effect of vibration isolation control, in addition to utilizing the traditional displacement amplitude, layer distance and acceleration as evaluation indexes, we also propose a new comprehensive evaluation index which has weighting coefficients and considers the input cost. It is shown that the newly proposed comprehensive index can more conveniently compare the advantages and disadvantages of different control algorithms, and the fuzzy PID is the most suitable among the three control algorithms.","PeriodicalId":16121,"journal":{"name":"Journal of Intelligent Material Systems and Structures","volume":"3 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79570797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and optimization of a new flow-mode magnetorheological mount with compact structure and extended workable force 一种结构紧凑、工作力大的新型流型磁流变支架的设计与优化
IF 2.7 3区 材料科学
Journal of Intelligent Material Systems and Structures Pub Date : 2023-07-03 DOI: 10.1177/1045389x231185256
Y. Shiao, Tan-Linh Huynh
{"title":"Design and optimization of a new flow-mode magnetorheological mount with compact structure and extended workable force","authors":"Y. Shiao, Tan-Linh Huynh","doi":"10.1177/1045389x231185256","DOIUrl":"https://doi.org/10.1177/1045389x231185256","url":null,"abstract":"Magnetorheological-fluid-based mount (MR mount) is a useful type of semi-active vibration control device that is extensively used in automotive, construction, and medical applications. However, these applications are usually limited by the workable force range of the MR mount. This paper proposed a new design of MR mount using multiple magnetic poles based on a compact valve structure. Then, a three-step optimization process with evaluation is applied into this mount design to find out the optimal mount design through a cost function damping-force-to-volume ratio (DFVR). Simulation results showed that this proposed MR mount obtained an excellent DFVR of 3.23×107 N m−3, which is significantly higher than those of other MR mounts. According to the high DFVR of this MR mount, it is obvious that this MR mount has compact structure and dimension, and high workable force. The proposed MR mount has strong potential for its utility in commercial applications.","PeriodicalId":16121,"journal":{"name":"Journal of Intelligent Material Systems and Structures","volume":"402 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79904366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信