{"title":"利用多稳定压电能量收集器验证和优化磁恢复力的两个模型。","authors":"Haining Li, Kefu Liu, Jian Deng, Bing Li","doi":"10.1177/1045389X221151064","DOIUrl":null,"url":null,"abstract":"<p><p>This article presents a tunable multi-stable piezoelectric energy harvester. The apparatus consists of a stationary magnet and a cantilever beam whose free end is attached by an assembly of two cylindrical magnets that can be moved along the beam and a small cylindrical magnet that is fixed at the beam tip. By varying two parameters, the system can assume three stability states: tri-stable, bi-stable, and mono-stable, respectively. The developed apparatus is used to validate two models for the magnetic restoring force: the equivalent magnetic point dipole approach and the equivalent magnetic 2-point dipole approach. The study focuses on comparing the accuracy of the two models for a wide range of the tuning parameters. The restoring forces of the apparatus are determined dynamically and compared with their analytical counterparts based on each of the models. To improve the model accuracy, a model optimization is carried out by using the multi-population genetic algorithm. With the optimum models, the parametric sensitivity of each of the models is investigated. The stability state region is generated by using the optimum second model.</p>","PeriodicalId":16121,"journal":{"name":"Journal of Intelligent Material Systems and Structures","volume":"34 14","pages":"1688-1701"},"PeriodicalIF":2.4000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10375009/pdf/","citationCount":"0","resultStr":"{\"title\":\"Validation and optimization of two models for the magnetic restoring forces using a multi-stable piezoelectric energy harvester.\",\"authors\":\"Haining Li, Kefu Liu, Jian Deng, Bing Li\",\"doi\":\"10.1177/1045389X221151064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This article presents a tunable multi-stable piezoelectric energy harvester. The apparatus consists of a stationary magnet and a cantilever beam whose free end is attached by an assembly of two cylindrical magnets that can be moved along the beam and a small cylindrical magnet that is fixed at the beam tip. By varying two parameters, the system can assume three stability states: tri-stable, bi-stable, and mono-stable, respectively. The developed apparatus is used to validate two models for the magnetic restoring force: the equivalent magnetic point dipole approach and the equivalent magnetic 2-point dipole approach. The study focuses on comparing the accuracy of the two models for a wide range of the tuning parameters. The restoring forces of the apparatus are determined dynamically and compared with their analytical counterparts based on each of the models. To improve the model accuracy, a model optimization is carried out by using the multi-population genetic algorithm. With the optimum models, the parametric sensitivity of each of the models is investigated. The stability state region is generated by using the optimum second model.</p>\",\"PeriodicalId\":16121,\"journal\":{\"name\":\"Journal of Intelligent Material Systems and Structures\",\"volume\":\"34 14\",\"pages\":\"1688-1701\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10375009/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Material Systems and Structures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/1045389X221151064\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Material Systems and Structures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/1045389X221151064","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/21 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Validation and optimization of two models for the magnetic restoring forces using a multi-stable piezoelectric energy harvester.
This article presents a tunable multi-stable piezoelectric energy harvester. The apparatus consists of a stationary magnet and a cantilever beam whose free end is attached by an assembly of two cylindrical magnets that can be moved along the beam and a small cylindrical magnet that is fixed at the beam tip. By varying two parameters, the system can assume three stability states: tri-stable, bi-stable, and mono-stable, respectively. The developed apparatus is used to validate two models for the magnetic restoring force: the equivalent magnetic point dipole approach and the equivalent magnetic 2-point dipole approach. The study focuses on comparing the accuracy of the two models for a wide range of the tuning parameters. The restoring forces of the apparatus are determined dynamically and compared with their analytical counterparts based on each of the models. To improve the model accuracy, a model optimization is carried out by using the multi-population genetic algorithm. With the optimum models, the parametric sensitivity of each of the models is investigated. The stability state region is generated by using the optimum second model.
期刊介绍:
The Journal of Intelligent Materials Systems and Structures is an international peer-reviewed journal that publishes the highest quality original research reporting the results of experimental or theoretical work on any aspect of intelligent materials systems and/or structures research also called smart structure, smart materials, active materials, adaptive structures and adaptive materials.