Journal of Geophysical Research: Planets最新文献

筛选
英文 中文
Characterizing Hydrated Sulfates and Altered Phases in Jezero Crater Fan and Floor Geologic Units With SHERLOC on Mars 2020 利用 2020 年火星上的 SHERLOC 确定杰泽罗火山口扇形和底层地质单元中的水合硫酸盐和蜕变相的特征
IF 3.9 1区 地球科学
Journal of Geophysical Research: Planets Pub Date : 2024-07-20 DOI: 10.1029/2023JE008251
Yu Yu Phua, Bethany L. Ehlmann, Sandra Siljeström, Andrew D. Czaja, Pierre Beck, Stephanie Connell, Roger C. Wiens, Ryan S. Jakubek, Rebecca M. E. Williams, Maria-Paz Zorzano, Michelle E. Minitti, Alyssa C. Pascuzzo, Kevin P. Hand, Rohit Bhartia, Linda C. Kah, Lucia Mandon, Joseph Razzell Hollis, Eva L. Scheller, Sunanda Sharma, Andrew Steele, Kyle Uckert, Kenneth H. Williford, Anastasia G. Yanchilina
{"title":"Characterizing Hydrated Sulfates and Altered Phases in Jezero Crater Fan and Floor Geologic Units With SHERLOC on Mars 2020","authors":"Yu Yu Phua,&nbsp;Bethany L. Ehlmann,&nbsp;Sandra Siljeström,&nbsp;Andrew D. Czaja,&nbsp;Pierre Beck,&nbsp;Stephanie Connell,&nbsp;Roger C. Wiens,&nbsp;Ryan S. Jakubek,&nbsp;Rebecca M. E. Williams,&nbsp;Maria-Paz Zorzano,&nbsp;Michelle E. Minitti,&nbsp;Alyssa C. Pascuzzo,&nbsp;Kevin P. Hand,&nbsp;Rohit Bhartia,&nbsp;Linda C. Kah,&nbsp;Lucia Mandon,&nbsp;Joseph Razzell Hollis,&nbsp;Eva L. Scheller,&nbsp;Sunanda Sharma,&nbsp;Andrew Steele,&nbsp;Kyle Uckert,&nbsp;Kenneth H. Williford,&nbsp;Anastasia G. Yanchilina","doi":"10.1029/2023JE008251","DOIUrl":"https://doi.org/10.1029/2023JE008251","url":null,"abstract":"<p>The Mars 2020 Perseverance rover has explored fluvio-lacustrine sedimentary rocks within Jezero crater. Prior work showed that igneous crater floor Séítah and Máaz formations have mafic mineralogy with alteration phases that indicate multiple episodes of aqueous alteration. In this work, we extend the analyses of hydration to targets in the Jezero western fan delta, using data from the SHERLOC (Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals) Raman spectrometer. Spectral features, for example, sulfate and hydration peak positions and shapes, vary within, and across the crater floor and western fan. The proportion of targets with hydration associated with sulfates was approximately equal in the crater floor and the western fan. All hydrated targets in the crater floor and upper fan showed bimodal hydration peaks at ∼3,200 and ∼3,400 cm<sup>−1</sup>. The sulfate symmetric stretch at ∼1,000 cm<sup>−1</sup> coupled with a hydration peak at ∼3,400 cm<sup>−1</sup> indicate that MgSO<sub>4</sub>·<i>n</i>H<sub>2</sub>O (2 &lt; <i>n</i> ≤ 5) is a likely hydration carrier phase in all units, perhaps paired with low-hydration (<i>n</i> ≤ 1) amorphous Mg-sulfates, indicated by the ∼3,200 cm<sup>−1</sup> peak. Low-hydration MgSO<sub>4</sub>·<i>n</i>H<sub>2</sub>O (<i>n</i> = 1–2) are more prevalent in the fan, and hydrated targets in the fan front only had one peak at ∼3,400 cm<sup>−1</sup>. While anhydrite co-occurs with hydrated Mg-sulfates in the crater floor and fan front, hydrated Ca-sulfates are observed instead at the top of the upper fan. Collectively, the data imply aqueous deposition of sediments with formation of salts from high ionic strength fluids and subsequent aridity to preserve the observed hydration states.</p>","PeriodicalId":16101,"journal":{"name":"Journal of Geophysical Research: Planets","volume":"129 7","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023JE008251","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141732560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Volatile Transport on Ariel and Implications for the Origin and Distribution of Carbon Dioxide on Uranian Moons 阿丽埃尔星上的挥发性迁移及其对天王星上二氧化碳起源和分布的影响
IF 3.9 1区 地球科学
Journal of Geophysical Research: Planets Pub Date : 2024-07-19 DOI: 10.1029/2024JE008376
Stephanie M. Menten, Michael M. Sori, Ali M. Bramson, Tom A. Nordheim, Richard J. Cartwright
{"title":"Volatile Transport on Ariel and Implications for the Origin and Distribution of Carbon Dioxide on Uranian Moons","authors":"Stephanie M. Menten,&nbsp;Michael M. Sori,&nbsp;Ali M. Bramson,&nbsp;Tom A. Nordheim,&nbsp;Richard J. Cartwright","doi":"10.1029/2024JE008376","DOIUrl":"https://doi.org/10.1029/2024JE008376","url":null,"abstract":"<p>The moons of Uranus have only been visited once by Voyager 2 during its 1986 flyby. Earth-based telescopic observations show a spectral signature of carbon dioxide ice on the Uranian moons Ariel, Umbriel, Titania, and Oberon, with a somewhat higher abundance on their trailing hemispheres. The inner major moon Ariel exhibits the strongest carbon dioxide ice absorption bands, which then decrease in strength with increasing orbital distance from Uranus, with the outer major moon Oberon exhibiting the weakest absorption bands. Previous work has suggested that these hemispherical and radial trends result from radiolytic production of carbon dioxide ice from interactions between the moons' surfaces and charged particles trapped in Uranus' magnetosphere. Here, we use volatile transport modeling to characterize a possible migration cycle of carbon dioxide on Ariel. We find that carbon dioxide is readily mobilized toward Ariel's equator, and that existing topography such as canyons are locations of favorable deposition for carbon dioxide ice. We predict the presence of carbon dioxide ice deposits on the floors of Ariel's canyons. Our work suggests two possible classes of sources of carbon dioxide: an active source, which may be consistent with either radiolytic production from Uranus' magnetosphere or outgassing from Ariel's interior, or an ancient source that produced CO<sub>2</sub> that still exists in stable canyon deposits. A future Uranus orbiter could determine which hypothesis is most likely, or if carbon dioxide could be found both in the form of ice deposits on the surface and in a global exosphere.</p>","PeriodicalId":16101,"journal":{"name":"Journal of Geophysical Research: Planets","volume":"129 7","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JE008376","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141730252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Proposed Model for Cryovolcanic Activity on Enceladus Driven by Volatile Exsolution 由挥发性溶解物驱动的冰川火山活动的拟议模型
IF 3.9 1区 地球科学
Journal of Geophysical Research: Planets Pub Date : 2024-07-18 DOI: 10.1029/2023JE007977
Karl L. Mitchell, Jason Rabinovitch, Jonathan C. Scamardella, Morgan L. Cable
{"title":"A Proposed Model for Cryovolcanic Activity on Enceladus Driven by Volatile Exsolution","authors":"Karl L. Mitchell,&nbsp;Jason Rabinovitch,&nbsp;Jonathan C. Scamardella,&nbsp;Morgan L. Cable","doi":"10.1029/2023JE007977","DOIUrl":"https://doi.org/10.1029/2023JE007977","url":null,"abstract":"<p>There is considerable interest in sending a mission to Enceladus to sample its erupting materials, which are sourced from its ocean, a proposed habitable environment. However, we lack resolution between competing ascent and eruption models, which offer differing consequences and challenges for mission sampling and access strategies. We report a new Enceladus ascent and eruption model, “Cryo-Erupt,” where ascent from ocean to jet is driven by the exsolution and expansion of dissolved gases from ascending water within conduits. This mechanism shares many similarities with some forms of terrestrial activity, including explosive silicate volcanism, cold-water geysers and “limnic” eruptions. This preliminary study suggests that this mode of ascent and eruption is viable and broadly consistent with a range of observations including the apparent co-existence of point- (jet) and fissure- (curtain) sourced activity as well as strong contrasts in velocity and ice-to-vapor ratio between the plume and the jets feeding it. However, it requires the co-existence of a sublimation plume as an additive component to the broader plume. The outcomes of the Cryo-Erupt model differ in terms of conduit physical and chemical processes from previously proposed boiling interface eruption models, for example, predicting larger dynamic pressures and narrower conduits, which could present challenges for direct robotic access. Due to the lack of a static boiling interface or wall condensation, bulk composition is unlikely to change appreciably during ascent from the ocean-conduit interface to the jet, potentially simplifying the interpretation of samples collected in space or on Enceladus’ surface.</p>","PeriodicalId":16101,"journal":{"name":"Journal of Geophysical Research: Planets","volume":"129 7","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141639655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the Gravity Wave-Seeded Ionospheric Irregularities in the Martian Ionosphere 关于火星电离层中重力波引发的电离层不规则现象
IF 3.9 1区 地球科学
Journal of Geophysical Research: Planets Pub Date : 2024-07-15 DOI: 10.1029/2024JE008323
Rong Tian, Chunhua Jiang, Beatriz Sánchez-Cano, Wenjie Yin, Guobin Yang, Tongxin Liu, Yaogai Hu
{"title":"On the Gravity Wave-Seeded Ionospheric Irregularities in the Martian Ionosphere","authors":"Rong Tian,&nbsp;Chunhua Jiang,&nbsp;Beatriz Sánchez-Cano,&nbsp;Wenjie Yin,&nbsp;Guobin Yang,&nbsp;Tongxin Liu,&nbsp;Yaogai Hu","doi":"10.1029/2024JE008323","DOIUrl":"https://doi.org/10.1029/2024JE008323","url":null,"abstract":"<p>For the past few decades, it has been demonstrated that gravity waves (GWs) and neutral winds can drive ionospheric irregularities on Earth. Still, as far as we know, the formation of ionospheric irregularities on Mars due to GWs has not been well studied. In this study, we use data from the NASA's Mars Atmosphere and Volatile Evolution (MAVEN) mission to show evidence of an irregularity event in the Martian ionosphere, potentially seeded by the GWs break (GWB). Statistical findings indicate that the observed ratio of GWB-related irregularity events varies from ∼0.25 to ∼0.47 each year, and the average ratio in 2015–2020 is ∼0.37. We perform a numerical simulation to provide further insight into the processes behind irregularity formation, which employs neutral wind shear as a source of perturbation in the context of the GWB. The simulations yield results fundamentally aligned with the observed characteristics of ionospheric irregularities in the 2018 event by considering the wind shear as the disturbance source. This study provides supplementary insights into the perturbation sources involved in shaping irregularities within the Martian ionosphere and presents valuable information about the coupling between the Martian ionosphere and the lower atmosphere.</p>","PeriodicalId":16101,"journal":{"name":"Journal of Geophysical Research: Planets","volume":"129 7","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141624532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Geological History of Enceladus' Cratered Terrains 土卫二坑状地形的地质历史
IF 3.9 1区 地球科学
Journal of Geophysical Research: Planets Pub Date : 2024-07-14 DOI: 10.1029/2024JE008326
Mallory J. Kinczyk, Paul K. Byrne, Gerald W. Patterson
{"title":"The Geological History of Enceladus' Cratered Terrains","authors":"Mallory J. Kinczyk,&nbsp;Paul K. Byrne,&nbsp;Gerald W. Patterson","doi":"10.1029/2024JE008326","DOIUrl":"https://doi.org/10.1029/2024JE008326","url":null,"abstract":"<p>This study presents a comprehensive assessment of the geomorphology, crater distributions, and tectonic structures within Enceladus' cratered terrains. We analyzed the distributions of impact craters and tectonic structures in seven regions of interest to inform an interpretation of the geological history of this terrain in the context of Enceladus' global evolution. We found that the tectonic structures, including both ancient, subdued troughs and young, narrow fractures, point to a cratered terrain that not only experienced early tectonic modification but also shows evidence of recent geological activity. Ancient troughs present in the equatorial cratered terrains are similar in scale and orientation to troughs present in the Leading and Trailing Hemisphere Terrains, an observation that supports possible non-synchronous rotation of the ice shell. A dearth of impact craters in the equatorial regions as identified previously does not hold for craters &lt;3 km in diameter in the anti-Saturnian hemisphere. The anomalous presence of excess small craters in this region could be due to secondary or sesquinary impacts from a catastrophic event occurring at Enceladus or a neighboring moon. Finally, narrow fractures are pervasive across the cratered terrains and are most commonly oriented parallel or sub-parallel to the most proximal cratered terrain boundary. This directionality of pervasive recent fracturing could be related to the vertical movement of an isostatically uncompensated ice shell. Enceladus' cratered terrains provide insight into the long-term evolution of the satellite, an important component to assessing its role in Solar System evolution and its potential for habitability.</p>","PeriodicalId":16101,"journal":{"name":"Journal of Geophysical Research: Planets","volume":"129 7","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JE008326","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141624289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Water-Limited Hydrothermalism and Volcanic Resurfacing of Eridania Basin, Mars 火星埃里达尼亚盆地的限水热液作用和火山重铺
IF 3.9 1区 地球科学
Journal of Geophysical Research: Planets Pub Date : 2024-07-11 DOI: 10.1029/2024JE008461
Emmy B. Hughes, James Wray, Suniti Karunatillake, Grace Fanson, Elise Harrington, Don R. Hood
{"title":"Water-Limited Hydrothermalism and Volcanic Resurfacing of Eridania Basin, Mars","authors":"Emmy B. Hughes,&nbsp;James Wray,&nbsp;Suniti Karunatillake,&nbsp;Grace Fanson,&nbsp;Elise Harrington,&nbsp;Don R. Hood","doi":"10.1029/2024JE008461","DOIUrl":"https://doi.org/10.1029/2024JE008461","url":null,"abstract":"<p>The Eridania Basin system, located in the martian southern highlands, may have hosted long-lived lacustrine hydrothermalism. Despite its multi-basin scale and suggested longevity that should pervasively alter the landscape, evidence for consistent compositional signatures of lacustrine hydrothermalism across varying spatial scales is poorly known. Here we synthesize orbital data sets (derived from the Gamma Ray Spectrometer, GRS; Thermal Emission Spectrometer, TES; and Compact Reconnaissance Imaging Spectrometer for Mars, CRISM) to characterize the composition of Eridania's landscape from regional to outcrop scales. The bulk geochemistry representing decimeter depths is broadly on par with mafic igneous compositions seen elsewhere on Mars. The landscape-scale mineralogy of Eridania suggests a compositional distinction between Eridania's northernmost basin and the remaining basins. Meanwhile, chloride mapping and analyses of amorphous silica and acid-altered clay phases at the outcrop scale both show that mineralogical evidence for hydrothermal alteration and putative lacustrine activity is broadly limited to the northernmost basin, and that most other amorphous silica in Eridania is consistent with low-to-minimal water/rock weathering. This suggests either limited regional hydrothermalism or extensive mafic resurfacing occurred in Eridania, the latter of which is consistent with previous studies. Our findings collectively suggest that Eridania underwent local crystal hydrothermal alteration, perhaps confined to the northernmost basin, while much of the remainder of the Eridania's basins either experienced low-temperature weathering or extensive resurfacing to at least meter scale depths by later volcanism. This supports prior inferences of spatially and temporally limited surface hydrology on Mars and extensive volcanic resurfacing of basins, as in the Gusev Crater.</p>","PeriodicalId":16101,"journal":{"name":"Journal of Geophysical Research: Planets","volume":"129 7","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JE008461","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141597151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dayside Magnetodisk Reconnection in Jovian System: Galileo and Voyager Observation 彗星系统中的日侧磁盘再连接:伽利略和旅行者观测
IF 3.9 1区 地球科学
Journal of Geophysical Research: Planets Pub Date : 2024-07-11 DOI: 10.1029/2023JE008240
Jinyan Zhao, Ruilong Guo, Quanqi Shi, Tao Tang, Alexander William Degeling, Zhonghua Yao, Denis Grodent, Shi-Chen Bai, Jong-Sun Park, Xiao Ma, Junjie Chen, Binzheng Zhang, Huizi Wang, Anmin Tian, Qiugang Zong
{"title":"Dayside Magnetodisk Reconnection in Jovian System: Galileo and Voyager Observation","authors":"Jinyan Zhao,&nbsp;Ruilong Guo,&nbsp;Quanqi Shi,&nbsp;Tao Tang,&nbsp;Alexander William Degeling,&nbsp;Zhonghua Yao,&nbsp;Denis Grodent,&nbsp;Shi-Chen Bai,&nbsp;Jong-Sun Park,&nbsp;Xiao Ma,&nbsp;Junjie Chen,&nbsp;Binzheng Zhang,&nbsp;Huizi Wang,&nbsp;Anmin Tian,&nbsp;Qiugang Zong","doi":"10.1029/2023JE008240","DOIUrl":"https://doi.org/10.1029/2023JE008240","url":null,"abstract":"<p>Magnetic reconnection, an essential mechanism in plasma physics that changes magnetic topology and energizes charged particles, plays a vital role in the dynamic processes of the Jovian magnetosphere. The traditional Vasyliūnas cycle only considers the effect of magnetic reconnection at the nightside magnetodisk. Recently, magnetic reconnection has been identified at the dayside magnetodisk in Saturn's magnetosphere and can impact dayside auroral processes. In this study, we provide the first evidence that the dayside magnetodisk reconnection can also occur at Jupiter. Using data from the Galileo and Voyager 2 spacecraft, we have identified 18 dayside reconnection events with radial distances in the range of 30–60 Jupiter radii (<i>R</i><sub><i>J</i></sub>). We analyzed the particle (electron and ion) flux, energy spectra, and characteristic energy of these dayside events and compared them to the nightside events. The statistical results show that the energy spectra and characteristic energy of electrons/ions in dayside and nightside magnetic reconnection events are comparable. On average, the characteristic energy of ions on the dayside is higher than that on the nightside. Based on the limited data set, we speculate that the occurrence rate of dayside magnetodisk reconnection should be significant. The dayside Jovian magnetodisk reconnection seems to have a comparable effect on providing energetic particles as that at nightside and to be one of the key processes driving dynamics within the Jovian magnetosphere.</p>","PeriodicalId":16101,"journal":{"name":"Journal of Geophysical Research: Planets","volume":"129 7","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023JE008240","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141597147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling of the Impact-Generated Hydrothermal System at the Haughton Impact Structure 霍顿撞击结构的撞击生成热液系统建模
IF 3.9 1区 地球科学
Journal of Geophysical Research: Planets Pub Date : 2024-07-10 DOI: 10.1029/2023JE008267
A. J. Trowbridge, Simone Marchi, Gordon R. Osinski, Joshua M. Taron
{"title":"Modeling of the Impact-Generated Hydrothermal System at the Haughton Impact Structure","authors":"A. J. Trowbridge,&nbsp;Simone Marchi,&nbsp;Gordon R. Osinski,&nbsp;Joshua M. Taron","doi":"10.1029/2023JE008267","DOIUrl":"https://doi.org/10.1029/2023JE008267","url":null,"abstract":"<p>Hypervelocity impacts can generate hydrothermal systems, which have been suggested as candidate environments for prebiotic chemistry on the early Earth. The Haughton impact structure (a 23 km diameter crater located on Devon Island, Nunavut, Arctic Canada) displays evidence of water-rock alteration indicative of a hydrothermal system generated from a cosmic impact. To model the formation of this crater and subsequent hydrothermal alteration, we have successfully developed a new two-code methodology that utilizes a shock physics code and a hydrothermal code (HYDROTHERM). We can best reproduce the Haughton crater with a ∼700 m diameter projectile with an impact velocity of 14 km/s. With our approach, we were able to match all the major geological constraints observed at the Haughton impact structure. Our models show that the Haughton crater interior could have sustained temperatures ideal for thermophilic and hyperthermophilic life (50–120°C) for more than 50,000 years, indicating that these systems can sustain prebiotic chemistry and life for longer than previously estimated.</p>","PeriodicalId":16101,"journal":{"name":"Journal of Geophysical Research: Planets","volume":"129 7","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141584108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Venus Global Ionosphere-Thermosphere Model (V-GITM): A Coupled Thermosphere and Ionosphere Formulation 金星全球电离层-热层模型(V-GITM):热层和电离层耦合模型
IF 3.9 1区 地球科学
Journal of Geophysical Research: Planets Pub Date : 2024-07-10 DOI: 10.1029/2023JE008079
Brandon M. Ponder, Aaron J. Ridley, Stephen W. Bougher, David Pawlowski, Amanda Brecht
{"title":"The Venus Global Ionosphere-Thermosphere Model (V-GITM): A Coupled Thermosphere and Ionosphere Formulation","authors":"Brandon M. Ponder,&nbsp;Aaron J. Ridley,&nbsp;Stephen W. Bougher,&nbsp;David Pawlowski,&nbsp;Amanda Brecht","doi":"10.1029/2023JE008079","DOIUrl":"https://doi.org/10.1029/2023JE008079","url":null,"abstract":"<p>This paper introduces the new Venus global ionosphere-thermosphere model (V-GITM) which incorporates the terrestrial GITM framework with Venus-specific parameters, ion-neutral chemistry, and radiative processes in order to simulate some of the observable features regarding the temperatures, composition, and dynamical structure of the Venus atmosphere from 70 to 170 km. Atmospheric processes are included based upon formulations used in previous Venus GCMs, several augmentations exist, such as improved horizontal and vertical momentum equations and tracking exothermic chemistry. Explicitly solving the momentum equations allows for the exploration of its dynamical effects on the day-night structure. In addition, V-GITM's use of exothermic chemistry instead of a strong heating efficiency accounts for the heating due to the solar EUV while producing comparable temperatures to empirical models. V-GITM neutral temperatures and neutral-ion densities are compared to upper atmosphere measurements obtained from Pioneer Venus and Venus Express. V-GITM demonstrates asymmetric horizontal wind velocities through the cloud tops to the middle thermosphere and explains the mechanisms for sustaining the wind structure. In addition, V-GITM produces reasonable dayside ion densities and shows that the neutral winds can carry the ions to the nightside via an experiment advecting <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msubsup>\u0000 <mi>O</mi>\u0000 <mn>2</mn>\u0000 <mo>+</mo>\u0000 </msubsup>\u0000 </mrow>\u0000 <annotation> ${mathrm{O}}_{2}^{+}$</annotation>\u0000 </semantics></math>.</p>","PeriodicalId":16101,"journal":{"name":"Journal of Geophysical Research: Planets","volume":"129 7","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023JE008079","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141584112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Acoustic Propagation in the Near-Surface Martian Atmosphere 近地表火星大气中的声波传播
IF 3.9 1区 地球科学
Journal of Geophysical Research: Planets Pub Date : 2024-07-10 DOI: 10.1029/2024JE008469
Martin Gillier, Andi Petculescu, Alexander E. Stott, Naomi Murdoch, Xavier Jacob, Baptiste Chide, Sylvestre Maurice, David Mimoun
{"title":"Acoustic Propagation in the Near-Surface Martian Atmosphere","authors":"Martin Gillier,&nbsp;Andi Petculescu,&nbsp;Alexander E. Stott,&nbsp;Naomi Murdoch,&nbsp;Xavier Jacob,&nbsp;Baptiste Chide,&nbsp;Sylvestre Maurice,&nbsp;David Mimoun","doi":"10.1029/2024JE008469","DOIUrl":"https://doi.org/10.1029/2024JE008469","url":null,"abstract":"<p>This work introduces a comprehensive model of sound propagation on Mars, in light of the recent operation of several microphones on the Martian surface. The main outcome of this work is an operational acoustic model capable of simulating the sound field created by any source, at any location on the Martian surface, at any time. Expanding on the result of previous work (Gillier et al., 2024, https://doi.org/10.1029/2023je008257), we use the parabolic equation method for sound propagation in order to obtain the overall sound field produced by a source, in a given atmospheric composition and state, and accounting for ground properties. The resulting model enables the study of acoustics on Mars, and has the potential also to be used to probe the properties of the Martian environment using acoustic measurements with known sources. We investigate the effects of the Martian ground and the vertical profile of temperature and wind, on sound propagation. We find that the ground has a minor effect on sound propagation, and the wind profile strongly influences sound propagation as on Earth. However, the midday near surface temperature profiles on Mars are shown to cause refraction, which generates non-negligible acoustic losses that are an order of magnitude stronger than typical refraction-related acoustic losses on Earth. We show that the effect of the Martian atmospheric turbulence is to slightly reduce the acoustic losses due to refraction. Finally, we apply our model to show that refraction and atmospheric turbulence have a negligible effect on the propagation of sound from Ingenuity to the Perseverance rover.</p>","PeriodicalId":16101,"journal":{"name":"Journal of Geophysical Research: Planets","volume":"129 7","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JE008469","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141584111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信