{"title":"Mudflat Biostabilization Alters Coastal Landscape Sediment Connectivity","authors":"K. Valentine, M. L. Kirwan","doi":"10.1029/2024JG008500","DOIUrl":"https://doi.org/10.1029/2024JG008500","url":null,"abstract":"<p>Connectivity between adjacent ecosystems is thought to increase ecosystem resilience and function. In coastal ecosystems, the exchange of sediment and nutrients between mudflats and marshes is important for the long-term dynamics of both systems. Mudflat morphodynamics are driven by the interaction of waves and sediment erodibility, which is a function of sediment type and the presence of biostabilizers such as microphytobenthos. However, there is a poor understanding about how the evolution of mudflats may impact the morphodynamics and function of adjacent salt marshes. Here, we use a Coastal Landscape Transect model connecting mudflats and marshes to investigate how microphytobenthos influence the coupled behavior of mudflats and marshes, and how that coupled behavior influences carbon storage. We find that biofilms reduce the connectivity between mudflats and marshes by reducing erodibility and sediment exchange. Reduced connectivity associated with microphytobenthos leads to a shallower mudflat and more carbon stored in the mudflat sediments, which in turn cascades to a higher combined marsh and mudflat carbon stock. Furthermore, our results highlight the role of connectivity across the coastal landscape and suggest that biostabilization leads to relatively small changes in morphodynamics but relatively large changes in ecosystem function.</p>","PeriodicalId":16003,"journal":{"name":"Journal of Geophysical Research: Biogeosciences","volume":"130 3","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143632687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nitrogen Cycling Through Secondary Succession in a Northwestern Virginia Chronosequence","authors":"A. M. Parisien, H. E. Epstein","doi":"10.1029/2024JG008584","DOIUrl":"https://doi.org/10.1029/2024JG008584","url":null,"abstract":"<p>Forest clearing for agricultural use followed by cropland or pasture abandonment is a leading cause of forest disturbance. While theoretical models broadly predict the biogeochemical and structural dynamics of secondary forest succession following disturbances, much remains unknown regarding how specific components of biogeochemical cycling vary through secondary succession. Here we investigate two post-agricultural disturbance chronosequences at Blandy Experimental Farm in Boyce, VA, each consisting of an early, mid, and late successional field (∼20, ∼35, and ∼100 years old, respectively). We collected data observing a wide range of ecosystem N pools, transformations, and fluxes, including soil, litter, and foliar N; net N mineralization and nitrification; soil N leaching potential; and soil and foliar <sup>15</sup>N natural abundance. We found that total soil N increased throughout secondary succession; while litter N concentration decreased in late succession, total litter mass increased, so total litter N increased as well. Foliar N concentration increased from early to late succession, among and within species. While soil ammonium concentration decreased through succession, soil nitrate concentration increased. Net N mineralization and nitrification both increased throughout succession, and a greater proportion of mineralized N was nitrified later in succession. Isotopic analysis suggested high N-fixation in mid-succession, and these observations taken together indicated high N availability and a relatively open N cycle later in succession in this system. Comprehensive field observations such as these are essential for honing a mechanistic understanding of successional systems and making predictions about the biogeochemical cycling and ecosystem function of current and future successional forests.</p>","PeriodicalId":16003,"journal":{"name":"Journal of Geophysical Research: Biogeosciences","volume":"130 3","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JG008584","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143632689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaojuan Feng, Deborah Huntzinger, Ben Bond-Lamberty, Gil Bohrer, Marguerite A. Xenopoulos
{"title":"Honoring Our 2024 Reviewers: Advancing Excellence and Equity in JGR Biogeosciences","authors":"Xiaojuan Feng, Deborah Huntzinger, Ben Bond-Lamberty, Gil Bohrer, Marguerite A. Xenopoulos","doi":"10.1029/2025JG008871","DOIUrl":"https://doi.org/10.1029/2025JG008871","url":null,"abstract":"<p>Peer review is a critical evaluation process, one that is time-consuming but needed to maintain quality and credibility in science. At <i>JGR Biogeosciences</i> we are honoring the many 2024 reviewers who donated their time and expertise to ensure rigor, novelty, inclusiveness, and open practices for improving and advancing biogeosciences research.</p>","PeriodicalId":16003,"journal":{"name":"Journal of Geophysical Research: Biogeosciences","volume":"130 3","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2025JG008871","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143622521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
N. Rietze, R. J. Heim, E. Troeva, G. Schaepman-Strub, J. J. Assmann
{"title":"Pre-Fire Vegetation Conditions and Topography Shape Burn Mosaics of Siberian Tundra Fire Scars","authors":"N. Rietze, R. J. Heim, E. Troeva, G. Schaepman-Strub, J. J. Assmann","doi":"10.1029/2024JG008608","DOIUrl":"https://doi.org/10.1029/2024JG008608","url":null,"abstract":"<p>The fire season of 2020 in Siberia set a precedent for extreme wildfires in the Arctic tundra. Recent estimates indicated that the 2020 fires contributed 66% of the region's burned area over the last two decades. These fires burned in the carbon-rich permafrost landscape, releasing vast amounts of carbon, and changing land surface processes by burning vegetation and organic soils. However, little is known about the mosaics of burned and unburned patches formed by tundra fires and the underlying processes that generate them. In this study, we investigated six fire scars in the northeastern Siberian tundra using high-resolution PlanetScope imagery (3 m) to map burned fraction within the scars. We then used Bayesian mixed models to identify which biotic and abiotic predictors influenced the burned fraction. We observed high spatial variation in burned fraction across all tundra landforms common to the region. Current medium-resolution fire products could not capture this heterogeneity, thereby underestimating the burned area of fire scars by a factor of 1.2–4.7. The heterogeneity of the burn mosaic indicates a mix of burned and unburned patches, with median unburned patch sizes ranging between 189 and 288 m<sup>2</sup> per fire scar. Pre-fire land surface temperature, vegetation heterogeneity and topography predicted burned fraction in our analysis, matching factors previously shown to influence large-scale fire occurrence in the Arctic. Future studies need to consider the fine-scale heterogeneity within tundra landscapes to improve our understanding and predictions of fire spread, carbon emissions, post-fire recovery and ecosystem functioning.</p>","PeriodicalId":16003,"journal":{"name":"Journal of Geophysical Research: Biogeosciences","volume":"130 3","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JG008608","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143622522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Atmospheric Vapor Pressure Deficit Outweighs Soil Moisture Deficit in Controlling Global Ecosystem Water Use Efficiency","authors":"Chao Li, Dahong Zhang, Shiqiang Zhang, Yanan Wen, Wenhui Wang, Youdong Chen, Jian Peng","doi":"10.1029/2024JG008605","DOIUrl":"https://doi.org/10.1029/2024JG008605","url":null,"abstract":"<p>High vapor pressure deficit (VPD) and low soil moisture (SM) lead to soil and atmospheric droughts, which can stress carbon-water coupling in terrestrial ecosystems. However, the strong collinearity between VPD and SM, particularly under certain climatic conditions, makes it challenging to disentangle their independent contributions to carbon and water dynamics in land-atmosphere interactions. This study aimed to clarify the long-term independent response of global vegetation carbon-water coupling, based on ecosystem water-use efficiency (WUE<sub>E</sub>) and plant canopy water-use efficiency (WUE<sub>Et</sub>), to decoupled VPD and SM from 1982 to 2100. WUE<sub>E</sub> is defined as the ratio of ecosystem gross primary productivity to evapotranspiration, while WUE<sub>Et</sub> is defined as the ratio of ecosystem gross primary productivity to vegetation transpiration. The results indicate that from 1982 to 2018, both before and after the decoupling of VPD and SM, over 64% of global vegetation zones experienced stronger atmospheric moisture stress from VPD than soil drought stress from SM, consistently impacting WUE<sub>E</sub> and WUE<sub>Et</sub>. The influence of VPD on WUE<sub>E</sub> and WUE<sub>Et</sub> gradually declined, while the influence of SM presented a tendency to increase. The small difference in the responses of WUE<sub>E</sub> and WUE<sub>Et</sub> to VPD and SM is attributed to the strong collinearity between WUE<sub>E</sub> and WUE<sub>Et</sub>. The effects of VPD and SM on WUE<sub>E</sub> and WUE<sub>Et</sub> varied across vegetation cover gradients, biomes, and climatic zones. As atmospheric and soil drought intensifies in the coming decades, the effects of VPD on WUE<sub>E</sub> and WUE<sub>Et</sub> stress are stronger than those of SM across all four socio-economic shared pathway (SSP) scenarios. In the high SSP scenarios (SSP5-8.5 for WUE<sub>E</sub> and SSP3-7.0 for WUE<sub>Et</sub>), the dominant influence of VPD is expected to expand.</p>","PeriodicalId":16003,"journal":{"name":"Journal of Geophysical Research: Biogeosciences","volume":"130 3","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143595245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bailey A. Murphy, Christine R. Rollinson, Michael C. Dietze, Christina L. Staudhammer, Nicolena R. VonHedemann, Courtney A. Schultz, William J. Kleindl, Ankur R. Desai
{"title":"Insights Into Nature-Based Climate Solutions: Managing Forests for Climate Resilience and Carbon Stability","authors":"Bailey A. Murphy, Christine R. Rollinson, Michael C. Dietze, Christina L. Staudhammer, Nicolena R. VonHedemann, Courtney A. Schultz, William J. Kleindl, Ankur R. Desai","doi":"10.1029/2024JG008391","DOIUrl":"https://doi.org/10.1029/2024JG008391","url":null,"abstract":"<p>Successful implementation of forest management as a nature-based climate solution is dependent on the durability of management-induced changes in forest carbon storage and sequestration. As forests face unprecedented stability risks in the face of ongoing climate change, much remains unknown regarding how management will impact forest stability, or how interactions with climate might shift the response of forests to management across spatiotemporal scales. Here, we used a process-based model to simulate multidecadal projections of forest dynamics in response to changes in management and climate. Simulations were conducted across gradients in forest type, edaphic factors, and management intensity under two alternate radiative forcing scenarios (RCP4.5 and RCP8.5). This allowed for the quantification of forest stability shifts in response to climate change, and the role of management in modulating that response, where ecosystem stability is characterized as the resilience and temporal stability of net primary production, aboveground biomass, and soil carbon. Our results indicate that forest structure is primarily shaped by management, but the same management strategy often produced divergent structures over time, due to interactions with regional climate change. We found that management can be used to increase stability and minimize the release of stored carbon by reducing mortality, but also highlight the regional dependency of management-induced changes in resilience to climate change.</p>","PeriodicalId":16003,"journal":{"name":"Journal of Geophysical Research: Biogeosciences","volume":"130 3","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JG008391","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143581507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Changes of Nitrous Oxide Dynamics Induced by Typhoons: A Case in Zhanjiang Bay, China","authors":"Shangjun Cai, Qibin Lao, Xuan Lu, Xin Zhou, Guangzhe Jin, Chunqing Chen, Fajin Chen","doi":"10.1029/2024JG008617","DOIUrl":"https://doi.org/10.1029/2024JG008617","url":null,"abstract":"<p>Under the influence of global climate change, both the frequency and intensity of typhoons are increasing. This study examines the impact of the typhoon on nitrous oxide (N<sub>2</sub>O) dynamics in coastal bays, which are the most active areas of N<sub>2</sub>O production in the ocean. Employing the <sup>15</sup>N stable isotope labeling technique, coupled with stable isotope mass spectrometry and analysis of key biogeochemical parameters, we conducted a series of five continuous cruises before (one cruise) and after typhoons Chaba (four cruises) in Zhanjiang Bay, a semiclosed coastal bay in the northern South China Sea. Our results showed that the landfall of the typhoon led to a sharp decrease in N<sub>2</sub>O concentration in Zhanjiang Bay. However, the typhoon also triggered a substantial production of N<sub>2</sub>O in both water column and sedimentary environments, therefore facilitating a rapid recovery of N<sub>2</sub>O levels within a short period. In the water column, typhoon-induced enhancement of in situ N<sub>2</sub>O production could be attributed to a substantial input of nutrients and terrestrial particles, which creates an anaerobic or hypoxic microenvironment conducive to N<sub>2</sub>O production. Concurrently, in the sediment, the deposition of particles derived from typhoon-induced phytoplankton blooms introduces a large amount of fresh particulate organic matter, further promoting N<sub>2</sub>O production. Our findings suggest that typhoons are an efficient nitrogen removal process, which has been previously underestimated. By elucidating aspects of the nitrogen cycle in bays during typhoons, this research aids in shaping policies to mitigate greenhouse gas emissions triggered by typhoons.</p>","PeriodicalId":16003,"journal":{"name":"Journal of Geophysical Research: Biogeosciences","volume":"130 3","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143571245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Salma Elageed, Abdirahman M. Omar, Emil Jeansson, Ingunn Skjelvan, Knut Barthel, Truls Johannessen
{"title":"Organic Carbon Remineralization and Calcium Carbonate Production Rates in the Red Sea Computed From Oxygen and Alkalinity Utilizations","authors":"Salma Elageed, Abdirahman M. Omar, Emil Jeansson, Ingunn Skjelvan, Knut Barthel, Truls Johannessen","doi":"10.1029/2024JG008357","DOIUrl":"https://doi.org/10.1029/2024JG008357","url":null,"abstract":"<p>Organic carbon remineralization rate (OCRR) and the calcium carbonate production rate (CCPR) are influential variables on the efficiency of the biological carbon pump (BCP) but are not well understood in Red Sea. We used historical cruise data of carbonate chemistry, oxygen, and transient tracers from five locations along the north–south central axis of the Red Sea to estimate OCRR and CCPR from tracer-based water mean ages (Γ), apparent oxygen utilization (AOU), and alkalinity utilization (AU). This resulted in the first basin-wide and depth-resolving (100–1,000 m) OCRR and CCPR estimates. Spatial distributions for Γ, AOU, and AU were strongly influenced by the large-scale circulation and showed maxima intermediate depths (400–500 m). Conversely, OCRR and CCPR showed no statistically significant latitudinal differences and peaked (6.5 ± 4.3 and 11.9 ± 4.6 mmol C m<sup>−3</sup> yr<sup>−1</sup>, respectively) at 100-m depth, which decreased to nearly constant values (3.8 ± 0.7 and 1.4 ± 0.3 mmol C m<sup>−3</sup> yr<sup>−1</sup>, respectively) at 300 m and deeper. By depth-integrating CCPR, we estimated annual calcium carbonate production (CCP) of (0.8 ± 0.3) × 10<sup>12</sup> mol, or 0.6% of global ocean production, in the Red Sea, which has only 0.12% of the world ocean area. High correlation between AU and Γ indicated in situ alkalinity removal taking place also in subsurface and deep waters, probably due to chemical precipitation, which has been previously reported for the area. CCP-induced AU affects the carbonate chemistry in the Red Sea water column, and we hypothesize that it also impacts that of the Gulf of Aden through the outflowing Red Sea Outflow Water.</p>","PeriodicalId":16003,"journal":{"name":"Journal of Geophysical Research: Biogeosciences","volume":"130 3","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143565083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Naiara López-Rojo, Romain Sarremejane, Arnaud Foulquier, Gabriel Singer, Jacob Diamond, Delphine Rioux, Christian Miquel, Stephen Mulero, Clément Lionnet, Francisco J. Peñas, Amaia A. Rodeles, Thibault Datry
{"title":"Alternating Drying and Flowing Phases Control Stream Metabolism Through Short- and Long-Term Effects: Insights From a River Network","authors":"Naiara López-Rojo, Romain Sarremejane, Arnaud Foulquier, Gabriel Singer, Jacob Diamond, Delphine Rioux, Christian Miquel, Stephen Mulero, Clément Lionnet, Francisco J. Peñas, Amaia A. Rodeles, Thibault Datry","doi":"10.1029/2024JG008369","DOIUrl":"https://doi.org/10.1029/2024JG008369","url":null,"abstract":"<p>Stream metabolism is a key biogeochemical process in river networks, synthesizing the balance between gross primary production (GPP) and ecosystem respiration (ER). Globally, more rivers and streams are drying due to climate change and water abstraction for human uses and this can alter the organic carbon residence time leading to decoupled ER and terrestrial organic matter supply. Although the consequences of drying on CO<sub>2</sub> emissions have been recently quantified, its effects on stream metabolism are still poorly studied. We addressed the long-term effects of drying and rewetting events on stream metabolism by monitoring oxygen dynamics at 20 reaches across a drying river network, including perennial (PR) and nonperennial reaches (NPR) for one year. We also calculated several climatic and land use variables and characterized local abiotic conditions and biofilm and sediment communities at five sampling dates. ER was significantly higher in NPR than in PR reaches demonstrating in situ the effects of drying on stream metabolism. When analyzing the long-term drivers of ER and GPP, we found a direct positive effect of drying on ER and a negative effect on GPP. Drying also altered microbial community composition with algal communities from NPRs being different from those in PRs. In the short-term, the total oxygen consumption (respiration) during rewetting events was positively related to the duration of precedent nonflow period. Our results show that drying had an important effect on stream metabolism both in the short- and long term, supporting the need for including NPRs in global estimates of stream metabolism.</p>","PeriodicalId":16003,"journal":{"name":"Journal of Geophysical Research: Biogeosciences","volume":"130 3","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JG008369","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143564843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
E. Voggenreiter, L. ThomasArrigo, M. Bottaro, J. Kilian, D. Straub, F. Ring-Hrubesh, C. Bryce, M. Stahl, A. Kappler, P. Joshi
{"title":"Suppression of Methanogenesis by Microbial Reduction of Iron-Organic Carbon Associations in Fully Thawed Permafrost Soil","authors":"E. Voggenreiter, L. ThomasArrigo, M. Bottaro, J. Kilian, D. Straub, F. Ring-Hrubesh, C. Bryce, M. Stahl, A. Kappler, P. Joshi","doi":"10.1029/2024JG008650","DOIUrl":"https://doi.org/10.1029/2024JG008650","url":null,"abstract":"<p>Global methane (CH<sub>4</sub>) emissions from thawing permafrost peatlands are expected to increase substantially in the future. Net emission of CH<sub>4</sub> depends on the presence of more favorable terminal electron acceptors for microbial respiration, such as ferric iron (Fe(III)). In soils with high OC content, Fe(III) is often coprecipitated with organic carbon (OC). The presence of Fe(III)-OC coprecipitates could either suppress CH<sub>4</sub> emissions due to inhibition of methanogenesis and stimulation of anaerobic methane oxidation coupled to Fe(III) reduction, or enhance emissions by providing additional OC. Here, we investigated the role of Fe(III)-OC coprecipitates in net CH<sub>4</sub> release in a fully thawed, waterlogged permafrost peatland (Stordalen Mire, Abisko, Sweden). We synthesized Fe(III)-OC coprecipitates using natural organic matter from the field site and added them to waterlogged soil in a microcosm experiment and in situ, and followed Fe speciation and changes in greenhouse gas emissions over time. Fe(III)-OC coprecipitates were partially reduced (22%) within 42 days in the microcosm experiment, while almost full reduction (92 ± 4%) occurred in situ within 53 days. This led to a decrease in CH<sub>4</sub> emissions by 94% and 40% in the microcosm and field experiments, respectively, compared to no-coprecipitate controls. A decrease in both RNA-based <i>mcrA</i> copy numbers and relative abundance of detected methanogens indicated that methanogenesis was mainly inhibited by the addition of the coprecipitates due to microbial Fe(III) reduction. In conclusion, Fe(III)-OC coprecipitates temporarily suppress net CH<sub>4</sub> emissions in fully thawed permafrost soils, and might play a similar role in mitigating CH<sub>4</sub> release in other (periodically) flooded soils.</p>","PeriodicalId":16003,"journal":{"name":"Journal of Geophysical Research: Biogeosciences","volume":"130 3","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JG008650","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143565082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}