{"title":"Current therapies for osteoarthritis and prospects of CRISPR-based genome, epigenome, and RNA editing in osteoarthritis treatment.","authors":"Yuxi Chen, Xiao Luo, Rui Kang, Kaixin Cui, Jianping Ou, Xiya Zhang, Puping Liang","doi":"10.1016/j.jgg.2023.07.007","DOIUrl":"10.1016/j.jgg.2023.07.007","url":null,"abstract":"<p><p>Osteoarthritis (OA) is one of the most common degenerative joint diseases worldwide, causing pain, disability, and decreased quality of life. The balance between regeneration and inflammation-induced degradation results in multiple etiologies and complex pathogenesis of OA. Currently, there is a lack of effective therapeutic strategies for OA treatment. With the development of CRISPR-based genome, epigenome, and RNA editing tools, OA treatment has been improved by targeting genetic risk factors, activating chondrogenic elements, and modulating inflammatory regulators. Supported by cell therapy and in vivo delivery vectors, genome, epigenome, and RNA editing tools may provide a promising approach for personalized OA therapy. This review summarizes CRISPR-based genome, epigenome, and RNA editing tools that can be applied to the treatment of OA and provides insights into the development of CRISPR-based therapeutics for OA treatment. Moreover, in-depth evaluations of the efficacy and safety of these tools in human OA treatment are needed.</p>","PeriodicalId":15985,"journal":{"name":"Journal of genetics and genomics = Yi chuan xue bao","volume":" ","pages":"159-183"},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9889970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"GeMemiOM: the curated database on genes, putative methylation study targets, and microRNA targets for otitis media.","authors":"Kondyarpu Abhishek, Bineet Kumar Mohanta, Pratima Kumari, Anshuman Dixit, Puppala Venkat Ramchander","doi":"10.1016/j.jgg.2023.07.010","DOIUrl":"10.1016/j.jgg.2023.07.010","url":null,"abstract":"","PeriodicalId":15985,"journal":{"name":"Journal of genetics and genomics = Yi chuan xue bao","volume":" ","pages":"260-263"},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10150538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction of a CADASIL point mutation using adenine base editors in hiPSCs and blood vessel organoids.","authors":"Jingwen Wang, Lei Zhang, Guanglan Wu, Jinni Wu, Xinyao Zhou, Xiaolin Chen, Yongxia Niu, Yiren Jiao, Qianyi Liu, Puping Liang, Guang Shi, Xueqing Wu, Junjiu Huang","doi":"10.1016/j.jgg.2023.04.013","DOIUrl":"10.1016/j.jgg.2023.04.013","url":null,"abstract":"<p><p>Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a monogenic small vessel disease caused by mutations in the NOTCH3 gene. However, the pathogenesis of CADASIL remains unclear, and patients have limited treatment options. Here, we use human induced pluripotent stem cells (hiPSCs) generated from the peripheral blood mononuclear cells of a patient with CADASIL carrying a heterozygous NOTCH3 mutation (c.1261C>T, p.R421C) to develop a disease model. The correction efficiency of different adenine base editors (ABEs) is tested using the HEK293T-NOTCH3 reporter cell line. ABEmax is selected based on its higher efficiency and minimization of predicted off-target effects. Vascular smooth muscle cells (VSMCs) differentiated from CADASIL hiPSCs show NOTCH3 deposition and abnormal actin cytoskeleton structure, and the abnormalities are recovered in corrected hiPSC-derived VSMCs. Furthermore, CADASIL blood vessel organoids generated for in vivo modeling show altered expression of genes related to disease phenotypes, including the downregulation of cell adhesion, extracellular matrix organization, and vessel development. The dual adeno-associated virus (AAV) split-ABEmax system is applied to the genome editing of vascular organoids with an average editing efficiency of 8.82%. Collectively, we present potential genetic therapeutic strategies for patients with CADASIL using blood vessel organoids and the dual AAV split-ABEmax system.</p>","PeriodicalId":15985,"journal":{"name":"Journal of genetics and genomics = Yi chuan xue bao","volume":" ","pages":"197-207"},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10278458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"PICOTEES: a privacy-preserving online service of phenotype exploration for genetic-diagnostic variants from Chinese children cohorts.","authors":"Xinran Dong, Yulan Lu, Lanting Guo, Chuan Li, Qi Ni, Bingbing Wu, Huijun Wang, Lin Yang, Songyang Wu, Qi Sun, Hao Zheng, Wenhao Zhou, Shuang Wang","doi":"10.1016/j.jgg.2023.09.003","DOIUrl":"10.1016/j.jgg.2023.09.003","url":null,"abstract":"<p><p>The growth in biomedical data resources has raised potential privacy concerns and risks of genetic information leakage. For instance, exome sequencing aids clinical decisions by comparing data through web services, but it requires significant trust between users and providers. To alleviate privacy concerns, the most commonly used strategy is to anonymize sensitive data. Unfortunately, studies have shown that anonymization is insufficient to protect against reidentification attacks. Recently, privacy-preserving technologies have been applied to preserve application utility while protecting the privacy of biomedical data. We present the PICOTEES framework, a privacy-preserving online service of phenotype exploration for genetic-diagnostic variants (https://birthdefectlab.cn:3000/). PICOTEES enables privacy-preserving queries of the phenotype spectrum for a single variant by utilizing trusted execution environment technology, which can protect the privacy of the user's query information, backend models, and data, as well as the final results. We demonstrate the utility and performance of PICOTEES by exploring a bioinformatics dataset. The dataset is from a cohort containing 20,909 genetic testing patients with 3,152,508 variants from the Children's Hospital of Fudan University in China, dominated by the Chinese Han population (>99.9%). Our query results yield a large number of unreported diagnostic variants and previously reported pathogenicity.</p>","PeriodicalId":15985,"journal":{"name":"Journal of genetics and genomics = Yi chuan xue bao","volume":" ","pages":"243-251"},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10627545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wenbin Huang, Shiying Zhang, Jiuxiang Lin, Yi Ding, Nan Jiang, Jieni Zhang, Huaxiang Zhao, Feng Chen
{"title":"Rare loss-of-function variants in FLNB cause non-syndromic orofacial clefts.","authors":"Wenbin Huang, Shiying Zhang, Jiuxiang Lin, Yi Ding, Nan Jiang, Jieni Zhang, Huaxiang Zhao, Feng Chen","doi":"10.1016/j.jgg.2023.03.012","DOIUrl":"10.1016/j.jgg.2023.03.012","url":null,"abstract":"<p><p>Orofacial clefts (OFCs) are the most common congenital craniofacial disorders, of which the etiology is closely related to rare coding variants. Filamin B (FLNB) is an actin-binding protein implicated in bone formation. FLNB mutations have been identified in several types of syndromic OFCs and previous studies suggest a role of FLNB in the onset of non-syndromic OFCs (NSOFCs). Here, we report two rare heterozygous variants (p.P441T and p.G565R) in FLNB in two unrelated hereditary families with NSOFCs. Bioinformatics analysis suggests that both variants may disrupt the function of FLNB. In mammalian cells, p.P441T and p.G565R variants are less potent to induce cell stretches than wild type FLNB, suggesting that they are loss-of-function mutations. Immunohistochemistry analysis demonstrates that FLNB is abundantly expressed during palatal development. Importantly, Flnb<sup>-/-</sup> embryos display cleft palates and previously defined skeletal defects. Taken together, our findings reveal that FLNB is required for development of palates in mice and FLNB is a bona fide causal gene for NSOFCs in humans.</p>","PeriodicalId":15985,"journal":{"name":"Journal of genetics and genomics = Yi chuan xue bao","volume":" ","pages":"222-229"},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9470809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Gene therapy for monogenic disorders: challenges, strategies, and perspectives.","authors":"Yi Zhang, Zhi-Ying Wu","doi":"10.1016/j.jgg.2023.08.001","DOIUrl":"10.1016/j.jgg.2023.08.001","url":null,"abstract":"<p><p>Monogenic disorders refer to a group of human diseases caused by mutations in single genes. While disease-modifying therapies have offered some relief from symptoms and delayed progression for some monogenic diseases, most of these diseases still lack effective treatments. In recent decades, gene therapy has emerged as a promising therapeutic strategy for genetic disorders. Researchers have developed various gene manipulation tools and gene delivery systems to treat monogenic diseases. Despite this progress, concerns about inefficient delivery, persistent expression, immunogenicity, toxicity, capacity limitation, genomic integration, and limited tissue specificity still need to be addressed. This review gives an overview of commonly used gene therapy and delivery tools, along with the challenges they face and potential strategies to counter them.</p>","PeriodicalId":15985,"journal":{"name":"Journal of genetics and genomics = Yi chuan xue bao","volume":" ","pages":"133-143"},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10389324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"WITHDRAWN: Porcine reproductive and respiratory syndrome virus (PRRSV) inhibition with engineered Cas13d.","authors":"Guo Li, Xinjie Wang, Yajing Liu, Xinyuan Lv, Guanglei Li, Chengcheng Zhao, Dandan Wang, Xingxu Huang, Xiaoxiang Hu","doi":"10.1016/j.jgg.2020.02.006","DOIUrl":"10.1016/j.jgg.2020.02.006","url":null,"abstract":"<p><p>This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.</p>","PeriodicalId":15985,"journal":{"name":"Journal of genetics and genomics = Yi chuan xue bao","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7118647/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37843678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}