Journal of Geosciences最新文献

筛选
英文 中文
Editorial 社论
IF 1.4 4区 地球科学
Journal of Geosciences Pub Date : 2023-02-20 DOI: 10.3190/jgeosci.364
J. Plášil
{"title":"Editorial","authors":"J. Plášil","doi":"10.3190/jgeosci.364","DOIUrl":"https://doi.org/10.3190/jgeosci.364","url":null,"abstract":"","PeriodicalId":15957,"journal":{"name":"Journal of Geosciences","volume":" ","pages":""},"PeriodicalIF":1.4,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49497427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermodynamics of the Cu, Zn, and Cu-Zn phases: zincolivenite, adamite, olivenite, ludjibaite, strashimirite, and slavkovite Cu、Zn和Cu-Zn相的热力学:锌铝榴石、金刚石、橄榄岩、鲁吉白石、strashimirite和slavkovite
IF 1.4 4区 地球科学
Journal of Geosciences Pub Date : 2023-02-20 DOI: 10.3190/jgeosci.367
J. Majzlan, M. Števko, J. Plášil, J. Sejkora, E. Dachs
{"title":"Thermodynamics of the Cu, Zn, and Cu-Zn phases: zincolivenite, adamite, olivenite, ludjibaite, strashimirite, and slavkovite","authors":"J. Majzlan, M. Števko, J. Plášil, J. Sejkora, E. Dachs","doi":"10.3190/jgeosci.367","DOIUrl":"https://doi.org/10.3190/jgeosci.367","url":null,"abstract":"Secondary minerals, especially phosphates and arsenates of copper and zinc, form a group of phases with astonishing variability in crystal structures and chemical composition. Some of these minerals are more common than others and one has to ask whether the abundance is linked to their thermodynamic stability or rather to geochemical constraints. In this work, we used calorimetric techniques to determine the thermodynamic properties of synthetic olivenite [Cu 2 (AsO 4 )(OH)], zincolivenite [Cu 0.95 Zn 1.05 (AsO 4 )(OH)], adamite [Zn 2 (AsO 4 )(OH)], ludjibaite [Cu 5 (PO 4 ) 2 (OH) 4 ], natural strashimirite [(Cu 7.75 Zn 0.09 ) 7.84 (AsO 4 ) 3.89 (SO 4 ) 0.11 (OH) 3.79 ·5H 2 O], and a slavkovite sample dehydrated","PeriodicalId":15957,"journal":{"name":"Journal of Geosciences","volume":" ","pages":""},"PeriodicalIF":1.4,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47905255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Fluorpyromorphite, Pb5(PO4)3F, a new apatite-group mineral from Sukhovyaz Mountain, Southern Urals, and Tolbachik volcano, Kamchatka 萤石,Pb5(PO4)3F,一种来自南乌拉尔苏霍夫亚兹山和堪察加托尔巴奇克火山的新磷灰石类矿物
IF 1.4 4区 地球科学
Journal of Geosciences Pub Date : 2023-02-20 DOI: 10.3190/jgeosci.368
A. Kasatkin, I. Pekov, R. Škoda, N. Chukanov, F. Nestola, A. Agakhanov, A. Kuznetsov, N. N. Koshlyakova, J. Plášil, S. N. Britvin
{"title":"Fluorpyromorphite, Pb5(PO4)3F, a new apatite-group mineral from Sukhovyaz Mountain, Southern Urals, and Tolbachik volcano, Kamchatka","authors":"A. Kasatkin, I. Pekov, R. Škoda, N. Chukanov, F. Nestola, A. Agakhanov, A. Kuznetsov, N. N. Koshlyakova, J. Plášil, S. N. Britvin","doi":"10.3190/jgeosci.368","DOIUrl":"https://doi.org/10.3190/jgeosci.368","url":null,"abstract":"","PeriodicalId":15957,"journal":{"name":"Journal of Geosciences","volume":"1 1","pages":""},"PeriodicalIF":1.4,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42682510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Eruptive and magmatic evolution of North Chamo Volcanic Field (southern Ethiopia) 北查莫火山区(埃塞俄比亚南部)的喷发和岩浆演化
IF 1.4 4区 地球科学
Journal of Geosciences Pub Date : 2023-02-20 DOI: 10.3190/jgeosci.365
V. Rapprich, V. Janoušek, T. Hroch, J. Míková, V. Erban, F. Legesa, Z. Pécskay, P. Halodová
{"title":"Eruptive and magmatic evolution of North Chamo Volcanic Field (southern Ethiopia)","authors":"V. Rapprich, V. Janoušek, T. Hroch, J. Míková, V. Erban, F. Legesa, Z. Pécskay, P. Halodová","doi":"10.3190/jgeosci.365","DOIUrl":"https://doi.org/10.3190/jgeosci.365","url":null,"abstract":"A group of pyroclastic cones is dispersed in the North Chamo Volcanic Field, i.e. in the northern surroundings of the Chamo Lake and over neighbouring part of the Nech Sar plains (southern termination of the Main Ethiopian Rift). The activity of scattered cinder cones was partly coeval with that of Tosa Sucha Volcano (Calabrian), but continued also after Tosa Sucha’s extinction until Middle Pleistocene ( c. 0.5 Ma). Whereas scoria cones on the Nech Sar plains displayed a rather simple Strombolian eruptive style, the cones located within the northern part of Chamo Lake were characterized by more complex evolution. Ganjulle scoria cone, with a uniform olivine basalt composition, started with a Surtseyan-style eruption, which turned into Strombolian as the volcano grew above the water level. An even more complex history was documented for the Ganta cone. Compositional zoning of pyroclastic rocks is explained by zoned-chamber exhaustion. The transition from magmatic to phreatomagmatic style of the eruption was then most likely linked to syn-eruptive subsidence of the area on the Chamo Lake banks. Subsequent transition back to Strombolian style reflected the growth of the cone above water level. The Sr–Nd–Pb isotopes, together with major-element-based thermodynamic modelling, demonstrate that magmas parental to the North Chamo alkaline volcanic rocks (alkali basalt, through trachybasalt and trachyandesite to trachyte) evolved initially by closed-system fractionation of olivine, later joined by clinopyroxene, spinel and calcic plagioclase. The subsequent stage was characterized by a substantial ( c. 25% by mass) assimilation of country-rock felsic igneous material, perhaps corresponding to the Paleogene ignimbrites.","PeriodicalId":15957,"journal":{"name":"Journal of Geosciences","volume":" ","pages":""},"PeriodicalIF":1.4,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46582105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From magmatic arc to a post-accretionary setting: Late Palaeozoic granitoid plutons in the northwestern Trans-Altai Zone, Mongolia 从岩浆弧到后增生环境:蒙古跨阿尔泰带西北部晚古生代花岗岩类深成岩体
IF 1.4 4区 地球科学
Journal of Geosciences Pub Date : 2023-02-20 DOI: 10.3190/jgeosci.366
P. Hanžl, V. Janoušek, K. Hrdličková, D. Buriánek, O. Gerel, B. Altanbaatar, J. Hora, P. Čoupek
{"title":"From magmatic arc to a post-accretionary setting: Late Palaeozoic granitoid plutons in the northwestern Trans-Altai Zone, Mongolia","authors":"P. Hanžl, V. Janoušek, K. Hrdličková, D. Buriánek, O. Gerel, B. Altanbaatar, J. Hora, P. Čoupek","doi":"10.3190/jgeosci.366","DOIUrl":"https://doi.org/10.3190/jgeosci.366","url":null,"abstract":"The Trans-Altai Zone in the southern tract of the Central Asian Oceanic Belt is composed of Early Palaeozoic oceanic crust preserved in Ordovician to Devonian ophiolite fragments and Devonian–Carboniferous igneous arcs. The Edren and Baaran subzones at the NW tip of the Trans-Altai Zone were intruded by Late Palaeozoic plutons that have been examined by the combined geochronological and geochemical study. Mississippian subduction-related plutons intruded Devonian and Carboniferous volcano-sedimentary sequences in two magmatic pulses. The older, Tournaisian plutons (dated at 352 ± 1 and 347 ± 4 Ma) occur in both subzones; the younger Visean/Serpukhovian ones (331 ± 1 Ma) are found only at the northern boundary of the Edren Subzone. All Mississippian rocks are high-K calc-alkaline and characterised by a strong enrichment of hydrous fluid mobile lithophile elements over conservative Nb, Ta and Ti relative to normal mid-ocean ridge basalts. Low 87 Sr/ 86 Sr i (~ 0.7035–0.7038) and highly positive ε iNd values (+ 6.6 to + 5.2) suggest a relatively juvenile parental magma source with a short mean crustal residence. This corresponds well with the age of scarce inherited zircons, none of which is older than 530 Ma. The Early Permian post-tectonic plutons intruded the shallow crust of the Baaran Subzone (Devonian–Carboniferous flysch and Early Carboniferous volcanic arc). The prominent concentric body of the Aaj Bogd Pluton is composed of monzodiorites to monzogabbros (284 ± 1 and 294 ± 3 Ma) in its centre, surrounded by granite with syenite (282 ± 1 Ma) in the main mass of the pluton. Whole-rock Sr–Nd isotopic ratios match those of Carboniferous magmatic rocks, while trace-element patterns point to an intra-plate origin influenced by a fertile asthenospheric mantle component. On the other hand, the slightly older (290 ± 1 Ma) quartz syenites to alkali feldspar granites in the Baaran Subzone have spurious arc-like geochemistry inherited from their arc-related crustal source(s). Regional distribution of the numerous oval-shaped Early Permian alkaline post-orogenic plutons, some with A 2 -type granite affinity, follows the major Permian strike-slip zones spanning from the Dulate Arc in the west to the Khan Bogd Pluton in the east. These late, transcurrent zones apparently played an important role in late-orogenic magma generation, ascent and emplacement.","PeriodicalId":15957,"journal":{"name":"Journal of Geosciences","volume":" ","pages":""},"PeriodicalIF":1.4,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49463058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Editorial 社论
IF 1.4 4区 地球科学
Journal of Geosciences Pub Date : 2022-12-14 DOI: 10.3190/jgeosci.358
J. Plášil
{"title":"Editorial","authors":"J. Plášil","doi":"10.3190/jgeosci.358","DOIUrl":"https://doi.org/10.3190/jgeosci.358","url":null,"abstract":"","PeriodicalId":15957,"journal":{"name":"Journal of Geosciences","volume":" ","pages":""},"PeriodicalIF":1.4,"publicationDate":"2022-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48744944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stibioústalečite, Cu6Cu6(Sb2Te2)Se13, the first Te-Se member of tetrahedrite group, from the Ústaleč, Czech Republic Stibioústalečite,Cu6Cu6(Sb2Te2)Se13,四面体群的第一个Te-Se成员,来自捷克的Ústalećite
IF 1.4 4区 地球科学
Journal of Geosciences Pub Date : 2022-12-14 DOI: 10.3190/jgeosci.359
J. Sejkora, J. Plášil, E. Makovicky
{"title":"Stibioústalečite, Cu6Cu6(Sb2Te2)Se13, the first Te-Se member of tetrahedrite group, from the Ústaleč, Czech Republic","authors":"J. Sejkora, J. Plášil, E. Makovicky","doi":"10.3190/jgeosci.359","DOIUrl":"https://doi.org/10.3190/jgeosci.359","url":null,"abstract":"Stibioústalečite , Cu 12 (Sb 2 Te 2 )Se 13 , was approved as a new mineral species from the Ústaleč mine, 15 km west of Horažďovice, SW Bohemia, Czech Republic. It occurs as metallic anhedral grains up to 0.1–0.3 mm in size, dark grey in color, in a calcite gangue. It is directly associated with hakite-(Hg), berzelianite, the not-yet approved phase Cu 12 (As 2 Te 2 ) Se 13 and uraninite. Stibioústalečite is brittle, with an indistinct cleavage and a conchoidal fracture; the calculated density is 5.676 g/cm 3 . In reflected light, stibioústalečite is isotropic, and grey in color; internal reflections were not observed. Reflectance data for the four COM wavelengths in air are [λ (nm): R (%)]: 470: 33.3; 546: 33.2; 589: 33.1; 650: 33.0. Electron microprobe analysis for holotype material (grain used for single-crystal X-ray study) gave (in wt. % – average of 7 spot analyses): Cu 34.10, Ag 1.22, Fe 0.04, Zn 0.09, Hg 0.33, Sb 9.39, As 0.70, Te 12.41, S 3.76, Se 37.59, total 99.63. On the basis of (As + Sb + Te) = 4 atoms per formula unit ( apfu ), the empirical formula of stibioústalečite is M (2) (Cu 5.75 Ag 0.25 ) Σ6 M (1) (Cu 5.93 Hg 0.04 Zn 0.03 Fe 0.02 ) Σ6.02 X (3) (Te 2.12 Sb 1.68 As 0.20 ) Σ4 (Se 10.36 S 2.55 ) Σ12.91 . The ideal formula is Cu 6 Cu 6 (Sb 2 Te 2 ) Se 13 , which requires Cu 33.33, Sb 10.64 Te 11.16 Se 44.87, total 100 wt. %. Stibioústalečite is cubic, I 4̄ 3 m , with unit-cell parameters a = 10.828(4) Å, V = 1269.6(9) Å 3 , Z = 2. The crystal structure of stibioústalečite was studied by singlecrystal X-ray diffraction data and it is isotypic with other members of the tetrahedrite group. The mineral is named after its type locality Ústaleč and its chemical composition, being the (Sb/Te) end-member in the possible ústalečite series.","PeriodicalId":15957,"journal":{"name":"Journal of Geosciences","volume":" ","pages":""},"PeriodicalIF":1.4,"publicationDate":"2022-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44140597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The role of peridotite and pyroxenite melts in the origin of the Karapınar basalts, Cappadocia Volcanic Province, Central Anatolia 橄榄岩和辉石岩熔体在安纳托利亚中部卡帕多西亚火山省Karapınar玄武岩起源中的作用
IF 1.4 4区 地球科学
Journal of Geosciences Pub Date : 2022-12-14 DOI: 10.3190/jgeosci.362
Gülin GENÇOG˘LU Korkmaz, H. Kurt, Kürşad Asan, Maurizio Petrelli, Matthew Leybourne
{"title":"The role of peridotite and pyroxenite melts in the origin of the Karapınar basalts, Cappadocia Volcanic Province, Central Anatolia","authors":"Gülin GENÇOG˘LU Korkmaz, H. Kurt, Kürşad Asan, Maurizio Petrelli, Matthew Leybourne","doi":"10.3190/jgeosci.362","DOIUrl":"https://doi.org/10.3190/jgeosci.362","url":null,"abstract":"This study investigates the mantle source characteristics of the Quaternary Karapınar Basalts from the southwestern part of the Cappadocia Volcanic Province (CVP) in Central Anatolia using a combination of whole-rock and olivine major-and trace-element geochemistry as well as olivine oxygen isotope composition. Petrographic features and trace element distributions demonstrate that the Karapınar basalts can be classified into two sub-groups as basalt-1 (KB1/ alkaline–calc-alkaline) and basalt-2 (KB2/calc-alkaline). Although these two types of basalts are petrographically, texturally and geochemically different, they exhibit similar “orogenic type” incompatible trace element patterns in MORB-normalized diagrams. KB1 basalts are relatively primitive (e.g., up to 12 wt. % MgO) and calc-alkaline to mildly alkaline (Ne-normative content up to 5 %) in character, whereas KB2 basalts are enclave-bearing, calc-alkaline (hypersthene-normative plus quartz or olivine) ones with the more evolved composition. The most primitive olivine from the KB1 exhibits normal zoning, from core compositions of Fo 89 to rim compositions of Fo 86, with a concomitant decreasing in Ni and increasing MnO and CaO contents. On the contrary, the KB2 olivines show both inverse and normal zoning in terms of CaO and MnO contents. Moreover, the studied olivine phenocrysts have enriched rims and/or growth zones in Li, Zn, Cr, Ti, Sc, and V contents, which indicates a source containing recycled continental crust and/or magma recharging processes. The olivine from the most primitive samples (KB1; MgO > 10 wt. %) has high Zn/Fe, Fe/Mn, Co, Zn, Ni, Ca, and low Mn/Zn, Co/Fe values indicating melt addition from a pyroxenitic source. Calculations based on the olivine chemistry indicate that the most primitive nepheline normative KB1 rocks originated from the melting of mixed pyroxenitic-peridotitic source that shows the average proportion of ~70 % and ~30 %, respectively. The mean δ 18 O values of olivine phenocrysts (+ 6.4 ‰; n = 8) from the Karapınar basaltic rocks are higher than typical mantle olivine (+ 5.1–5.4 ‰) but overlap known OIB-EMII sources (+ 5.4–6.1 ‰). Collected data indicate that the Karapınar basalts are the mixing products of partial melts from mantle peridotite and metasomatic pyroxenite generated by the reaction of the subducted oceanic slab-derived melts with the surrounding peridotite, related to the convergence system of the Eurasian and Afro–Arabian plates.","PeriodicalId":15957,"journal":{"name":"Journal of Geosciences","volume":" ","pages":""},"PeriodicalIF":1.4,"publicationDate":"2022-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49420061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chemical composition and Raman spectroscopy of aerugite, xanthiosite, and a natural analog of KNi3(AsO4)(As2O7) from Johanngeorgenstadt, Germany 德国Johanngeorgenstadt的绿柱石、黄硫石和KNi3(AsO4)(As2O7)的天然类似物的化学组成和拉曼光谱
IF 1.4 4区 地球科学
Journal of Geosciences Pub Date : 2022-12-14 DOI: 10.3190/jgeosci.361
Iwona KORYBSKA-SADŁO, Adam Szuszkiewicz, Marta Prell, Piotr Gunia
{"title":"Chemical composition and Raman spectroscopy of aerugite, xanthiosite, and a natural analog of KNi3(AsO4)(As2O7) from Johanngeorgenstadt, Germany","authors":"Iwona KORYBSKA-SADŁO, Adam Szuszkiewicz, Marta Prell, Piotr Gunia","doi":"10.3190/jgeosci.361","DOIUrl":"https://doi.org/10.3190/jgeosci.361","url":null,"abstract":"Aerugite Ni 8.5 (AsO 4 ) 2 As 5+ O 8 and xanthiosite Ni 3 (AsO 4 ) 2 , two rare anhydrous arsenates, have been identified in a historic sample from Johanngeorgenstadt, Saxony, Germany. The minerals have been characterized through scanning electron microscopy, electron microprobe analysis and Raman spectroscopy for the first time. They are mostly dark-green (aerugite) to light-green (xanthiosite) fine-grained or microcrystalline crusts on a quartz matrix in association with barite, bunsenite, dolomite, and rooseveltite. Aerugite forms up to 200 μm large pseudo-hexagonal platy crystals, whereas xanthiosite forms short prisms to nearly equant forms, often with indistinct, poorly-developed and rounded faces. The chemical composition of the two minerals can be expressed by the empirical formulas: (Ni 7.92 Co 0.52 Cu 0.06 ) Σ8.50 (As 1.00 O 4 ) 2 As 1.00 O 8 with traces of Bi (aerugite, mean of 4 analyses, based on 32 oxygens) and (Ni 2.85 Co 0.12 Cu 0.03 ) Σ3.00 (As 1.00 O 4 ) 2 (xanthiosite, mean of 5 analyses, based on 32 oxygens). The Raman spectra of both minerals lack bands related to OH stretching vibrations and are dominated by antisymmetric ν 3 and symmetric ν 1 As–O vibrations in AsO 4 polyhedra centered at 817, 846 and 886 cm –1 in the case of aerugite and at 786, 808, 826 and 843 cm –1 in xanthiosite. Bands from stretching vibrations As-O in AsO 4 polyhedra are located at 728 and 735 cm –1 in aerugite and are slightly displaced to 726 and 747 cm –1 in xanthiosite. The Raman spectrum of aerugite also contains well-defined 692, 675 and 658 cm –1 bands due to the stretching mode of NiO 6 octahedra, a broad feature at 576 cm –1 probably from a number of modes connected with AsO 6 octahedra. On the other hand, the xanthiosite spectrum displays a number of low-intensity, well-defined bands related to antisymmetric ν 4 and ν 2 symmetric bending vibrations in AsO 4 below 700 cm –1 as well as to lattice vibrational modes and Ni-O interactions below 250 cm –1 . Locally, the interstices between xanthiosite grains are filled with cryptocrystalline mass with the mean chemical composition of (K 0.90 Ba 0.01 ) Σ0.91 (Ni 2.86 Co 0.11 Cu 0.05 ) Σ3.02 (As 1.00 O 4 )(As 2.1 O 7 ) with traces of Na (mean of 7 analyses, based on 11 oxygens). The recorded Raman spectrum, with a strongly overlapping xanthiosite-related signal, lacks bands of water molecules or OH groups and contains bands related to the As–O–As vibration modes attributed to pyroarsenate As 2 O 7 groups. Although it was impossible to obtain more detailed data on crystal structure, we suggest this is the first reported natural occurrence of KNi 3 (AsO 4 )(As 2 O 7 ) phase.","PeriodicalId":15957,"journal":{"name":"Journal of Geosciences","volume":" ","pages":""},"PeriodicalIF":1.4,"publicationDate":"2022-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44364857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molybdenum isotopic composition of molybdenite and the fertility potential of the Ekomédion U–Mo prospect, SW Cameroon 喀麦隆西南部Ekomédion U–Mo矿床辉钼矿的钼同位素组成和肥力潜力
IF 1.4 4区 地球科学
Journal of Geosciences Pub Date : 2022-12-14 DOI: 10.3190/jgeosci.363
V. F. Embui, Cheo Emmanuel, Suh, Bernd Lehmann, Lukáš Ackerman
{"title":"Molybdenum isotopic composition of molybdenite and the fertility potential of the Ekomédion U–Mo prospect, SW Cameroon","authors":"V. F. Embui, Cheo Emmanuel, Suh, Bernd Lehmann, Lukáš Ackerman","doi":"10.3190/jgeosci.363","DOIUrl":"https://doi.org/10.3190/jgeosci.363","url":null,"abstract":"We present Mo isotope data for molybdenite from the Ekomédion U–Mo prospect, SW Cameroon, a Late Neoproterozoic granite–pegmatite–quartz vein system. Disseminated and veinlet-controlled molybdenite in granite and pegmatitic pods yields a narrow range of δ 98 Mo values from – 0.06 to + 0.24 ‰, with two overlapping populations of + 0.03 ± 0.07 ‰ (n = 4) in granite, and slightly heavier of + 0.11 ± 0.10 ‰ (n = 5) in pegmatite. By contrast, molybdenite from a quartz– muscovite vein has an isotopically heavy δ 98 Mo value of + 1.61 ‰. We interpret this trend from granite through pegmatite to vein system towards isotopically heavy Mo to reflect the fractionation of an evolving magmatic–hydrothermal system. Furthermore, the LREE-enriched bulk-rock patterns with largely negative Eu anomalies and the overall enrichment of HREE in zircon indicate plagioclase fractionation as the dominant petrogenetic process during melt evolution. Furthermore, the presence of accessory ilmenite indicates relatively reducing conditions of the melt system, unfavorable for significant Mo accumulation. Therefore, the Ekomédion granite system seems to have limited economic potential for molybdenum despite the advanced degree of magmatic evolution.","PeriodicalId":15957,"journal":{"name":"Journal of Geosciences","volume":" ","pages":""},"PeriodicalIF":1.4,"publicationDate":"2022-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49349274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信