Yanjie Zhang , Weiyang Dong , Congyu Li , Haiyan Wang , Huan Wang , Yu Ling , Guokai Yan , Yang Chang
{"title":"Effects of antibiotics on corncob supported solid-phase denitrification: Denitrification and antibiotics removal performance, mechanism, and antibiotic resistance genes","authors":"Yanjie Zhang , Weiyang Dong , Congyu Li , Haiyan Wang , Huan Wang , Yu Ling , Guokai Yan , Yang Chang","doi":"10.1016/j.jes.2022.10.020","DOIUrl":"10.1016/j.jes.2022.10.020","url":null,"abstract":"<div><p>Solid-phase denitrification (SPD) has been used in wastewater treatment plant effluent to enhance nitrate removal, and antibiotics co-existing in the effluent is a common environmental problem. In this study, it was systematically investigated the effect of single trace sulfamethoxazole (SMX)/trimethoprim (TMP) and their mixture on microbial denitrification performance, the antibiotics removal, and antibiotics resistance genes (ARGs) in corncob supported SPD system. The average denitrification rate was improved by 46.90% or 61.09% with single 50 µg/L SMX or TMP, while there was no significant inhibition with mixed SMX and TMP. The abundance of dominant denitrifiers (Comamonadaceae family and <em>Azospia</em>) and fermentation bacteria (<em>Ancalomicrobium</em>) were consistent with the denitrification performance of different antibiotics groups. Single SMX and TMP achieved relatively higher denitrification gene and enzyme abundance. Mixed SMX and TMP improved the denitrification gene copies, but they reduced the key denitrification enzymes except for EC 1.7.7.2. Additionally, the removal efficiency of TMP (56.70% ± 3.18%) was higher than that of SMX (25.44% ± 2.62%) in single antibiotic group, and the existence of other antibiotics (i.e. SMX or TMP) had no significant impact on the TMP or SMX removal performance. Biodegradation was the main removal mechanism of SMX and TMP, while sludge and corncob adsorption contributed a little to their removal. SMX had the risk of sulfanilamide resistance genes (SRGs) dissemination. Furthermore, network analysis indicated that <em>Niveibacterium</em> and <em>Bradyrhizobium</em> were the potential hosts of SRGs, which promoted the horizontal transmission of ARGs.</p></div>","PeriodicalId":15774,"journal":{"name":"Journal of environmental sciences","volume":"130 ","pages":"Pages 24-36"},"PeriodicalIF":6.9,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9325547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaolin Han , Wei Zhang , Shuai Li , Congyu Cheng , Qi Yu , Qilong Jia , Lei Zhou , Guangli Xiu
{"title":"Mn-MOF derived manganese sulfide as peroxymonosulfate activator for levofloxacin degradation: An electron-transfer dominated and radical/nonradical coupling process","authors":"Xiaolin Han , Wei Zhang , Shuai Li , Congyu Cheng , Qi Yu , Qilong Jia , Lei Zhou , Guangli Xiu","doi":"10.1016/j.jes.2022.10.026","DOIUrl":"10.1016/j.jes.2022.10.026","url":null,"abstract":"<div><p>Recently, transition metal sulfides have attracted much attention due to their better catalytic capacities as peroxymonosulfate (PMS) activator than their metal oxide counterparts. However, the systematic studies on PMS activation using transition metal sulfides are still lacking. In this work, manganese sulfide (MnS) materials were synthesized via a MOFs-derived method and utilized for PMS activation to degrade levofloxacin (LVF) in water for the first time. As expected, MnS exhibited remarkable LVF degradation efficiency by PMS activation, which was distinctly higher than Mn<sub>2</sub>O<sub>3</sub>. The results of quenching experiments, electro spin resonance identification and electrochemical tests indicated that electron-transfer progress was the dominant mechanism in α-MnS/PMS system. Meanwhile, the presence of <sup>1</sup>O<sub>2</sub> and radicals further became the removal of LVF by α-MnS/PMS system into a radical/nonradical coupling process. The superior electrical conductivity of α-MnS than α-Mn<sub>2</sub>O<sub>3</sub> was revealed by DFT calculations, which resulted in the higher catalytic capacity of α-MnS. The result of XPS also indicated the S species in MnS accelerated the recycle of Mn(IV)/Mn(II) and then promoted the generation of radicals. Furthermore, the influence of various environmental conditions on LVF removal and the reusability of α-MnS were also investigated, which demonstrated the high application potential of α-MnS/PMS system. Finally, six possible pathways of LVF oxidation in the system were proposed based on the identified byproducts and their ecotoxicity was evaluated with ECOSAR method. This work promotes the fundamental understanding of PMS activation by α-MnS and provides useful information for practical application of manganese sulfide in water treatment.</p></div>","PeriodicalId":15774,"journal":{"name":"Journal of environmental sciences","volume":"130 ","pages":"Pages 197-211"},"PeriodicalIF":6.9,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9626391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Teresa Kumblathan , Yanming Liu , Yuanyuan Qiu , Lilly Pang , Steve E. Hrudey , X. Chris Le , Xing-Fang Li
{"title":"An efficient method to enhance recovery and detection of SARS-CoV-2 RNA in wastewater","authors":"Teresa Kumblathan , Yanming Liu , Yuanyuan Qiu , Lilly Pang , Steve E. Hrudey , X. Chris Le , Xing-Fang Li","doi":"10.1016/j.jes.2022.10.006","DOIUrl":"10.1016/j.jes.2022.10.006","url":null,"abstract":"<div><p>Wastewater surveillance (WS) of SARS-CoV-2 currently requires multiple steps and suffers low recoveries and poor sensitivity. Here, we report an improved analytical method with high sensitivity and recovery to quantify SARS-CoV-2 RNA in wastewater. To improve the recovery, we concentrated SARS-CoV-2 viral particles and RNA from both the solid and aqueous phases of wastewater using an electronegative membrane (EM). The captured viral particles and RNA on the EM were incubated in our newly developed viral inactivation and RNA preservation (VIP) buffer. Subsequently, the RNA was concentrated on magnetic beads and inhibitors removed by washing. Without eluting, the RNA on the magnetic beads was directly detected using reverse transcription quantitative polymerase chain reaction (RT-qPCR). Analysis of SARS-CoV-2 pseudovirus (SARS-CoV-2 RNA in a noninfectious viral coat) spiked to wastewater samples showed an improved recovery of 80%. Analysis of 120 wastewater samples collected twice weekly between May 2021 and February 2022 from two wastewater treatment plants showed 100% positive detection, which agreed with the results independently obtained by a provincial public health laboratory. The concentrations of SARS-CoV-2 RNA in these wastewater samples ranged from 2.4×10<sup>2</sup> to 2.9×10<sup>6</sup> copies per 100 mL of wastewater. Our method's capability of detecting trace and diverse concentrations of SARS-CoV-2 in complex wastewater samples is attributed to the enhanced recovery of SARS-CoV-2 RNA and efficient removal of PCR inhibitors. The improved method for the recovery and detection of viral RNA in wastewater is important for wastewater surveillance, complementing clinical diagnostic tests for public health protection.</p></div>","PeriodicalId":15774,"journal":{"name":"Journal of environmental sciences","volume":"130 ","pages":"Pages 139-148"},"PeriodicalIF":6.9,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9554329/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9288115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Linpeng Yu , Eryi Zhang , Lin Yang , Shiqi Liu , Christopher Rensing , Shungui Zhou
{"title":"Combining biological denitrification and electricity generation in methane-powered microbial fuel cells","authors":"Linpeng Yu , Eryi Zhang , Lin Yang , Shiqi Liu , Christopher Rensing , Shungui Zhou","doi":"10.1016/j.jes.2022.10.013","DOIUrl":"10.1016/j.jes.2022.10.013","url":null,"abstract":"<div><p>Methane has been demonstrated to be a feasible substrate for electricity generation in microbial fuel cells (MFCs) and denitrifying anaerobic methane oxidation (DAMO). However, these two processes were evaluated separately in previous studies and it has remained unknown whether methane is able to simultaneously drive these processes. Here we investigated the co-occurrence and performance of these two processes in the anodic chamber of MFCs. The results showed that methane successfully fueled both electrogenesis and denitrification. Importantly, the maximum nitrate removal rate was significantly enhanced from (1.4 ± 0.8) to (18.4 ± 1.2) mg N/(L·day) by an electrogenic process. In the presence of DAMO, the MFCs achieved a maximum voltage of 610 mV and a maximum power density of 143 ± 12 mW/m<sup>2</sup>. Electrochemical analyses demonstrated that some redox substances (e.g. riboflavin) were likely involved in electrogenesis and also in the denitrification process. High-throughput sequencing indicated that the methanogen <em>Methanobacterium</em>, a close relative of <em>Methanobacterium espanolae</em>, catalyzed methane oxidation and cooperated with both exoelectrogens and denitrifiers (e.g., <em>Azoarcus</em>). This work provides an effective strategy for improving DAMO in methane-powered MFCs, and suggests that methanogens and denitrifiers may jointly be able to provide an alternative to archaeal DAMO for methane-dependent denitrification.</p></div>","PeriodicalId":15774,"journal":{"name":"Journal of environmental sciences","volume":"130 ","pages":"Pages 212-222"},"PeriodicalIF":6.9,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9325540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dingyi Wang , Tingting Zhang , Xudong Guo , Dayi Ling , Ligang Hu , Guibin Jiang
{"title":"The potential of 3D printing in facilitating carbon neutrality","authors":"Dingyi Wang , Tingting Zhang , Xudong Guo , Dayi Ling , Ligang Hu , Guibin Jiang","doi":"10.1016/j.jes.2022.10.024","DOIUrl":"10.1016/j.jes.2022.10.024","url":null,"abstract":"<div><p>At present, dramatically reduction of fossil fuel usage is regarded as a major initiative to achieve the carbon neutrality goal. Nevertheless, current energy policies are unlikely to achieve the climate goal without sacrificing economic development and people's livelihood because fossil fuels are currently the dominant energy source. As an environment-friendly manufacturing technology, three-dimensional printing (3DP) is flourishing and is considered beneficial to energy structure adjustment and industrial upgrading. Despite this, its potential to contribute to global carbon neutrality has not attracted enough attention. Herein, we explore the application of 3DP and its potential facilitating carbon neutrality from crucial sectors and applications including manufacturing, construction energy, livestock, and carbon capture and storage (CCS) technologies. The additive manufacturing and decentralized manufacturing characteristics of 3DP allow reducing greenhouse gas (GHG) emissions in manufacturing and construction sectors by optimized and lightweight designs, reduced material and energy consumption, and shortened transport processes. In addition, 3DP enables the precise manufacturing of customized complex structures and the expansion of functional materials, which makes 3DP an innovative alternative to the development of novel energy-related devices, cultured meat production technology, and CCS technologies. Despite this, the majority of applications of 3DP are still in an early stage and need further exploration. We call for further research to precisely evaluate the GHG emission reduction potential of 3DP and to make it better involved and deployed to better achieve carbon neutrality.</p></div>","PeriodicalId":15774,"journal":{"name":"Journal of environmental sciences","volume":"130 ","pages":"Pages 85-91"},"PeriodicalIF":6.9,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9325543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marie E. Vuillemin , Christophe Waterlot , Anthony Verdin , Sylvain Laclef , Christine Cézard , David Lesur , Catherine Sarazin , Dominique Courcot , Caroline Hadad , Eric Husson , Albert Nguyen Van Nhien
{"title":"Copper-uptake mediated by an ecofriendly zwitterionic ionic liquid: A new challenge for a cleaner bioeconomy","authors":"Marie E. Vuillemin , Christophe Waterlot , Anthony Verdin , Sylvain Laclef , Christine Cézard , David Lesur , Catherine Sarazin , Dominique Courcot , Caroline Hadad , Eric Husson , Albert Nguyen Van Nhien","doi":"10.1016/j.jes.2022.10.011","DOIUrl":"10.1016/j.jes.2022.10.011","url":null,"abstract":"<div><p><span>This study aims to investigate the ability of an imidazolium biobased Zwitterionic Ionic Liquids (ZILs) in enhancing the phytoavailability of copper from garden (G) and vineyard (V) soils using the model plant ryegrass. Uncontaminated and artificially contaminated CuSO</span><sub>4</sub> soils, unamended and ZIL-amended soil modalities were designed. The copper/ZIL molar ratio (1/4) introduced was rationally established based on molecular modeling and on the maximal copper concentration in artificially contaminated soil. Higher accumulation of copper in the shoots was detected for the uncontaminated and copper contaminated ZIL amended V soils (18.9 and 23.3 mg/kg, respectively) contrary to G soils together with a ZIL concentration of around 3% (<em>W/W</em>) detected by LC-MS analyses. These data evidenced a Cu-accumulation improvement of 38% and 66% compared to non-amended V soils (13.6 and 13.9 mg/kg respectively). ZIL would be mainly present under Cu(II)-ZIL<sub>4</sub><span> complexes in the shoots. The impact on the chemical composition of shoot was also studied. The results show that depending on the soils modalitity, the presence of free copper and/or ZIL led to different chemical compositions in lignin and monomeric sugar contents. In the biorefinery context, performances of enzymatic hydrolysis of shoots were also related to the presence of both ZIL and copper under free or complex forms. Ecotoxicity assessment of the vineyard soil samples indicated that the quantity of copper and ZIL remaining in the soils had no significant toxicity. ZIL amendment in a copper-contaminated soil was demonstrated as being a promising way to promote the valorization of phytoremediation plants.</span></p></div>","PeriodicalId":15774,"journal":{"name":"Journal of environmental sciences","volume":"130 ","pages":"Pages 92-101"},"PeriodicalIF":6.9,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9325546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaowan Zhu , Jin Wu , Guiqian Tang , Lin Qiao , Tingting Han , Xiaomei Yin , Xiangxue Liu , Ziming Li , Yajun Xiong , Di He , Zhiqiang Ma
{"title":"Influence of circulation types on temporal and spatial variations of ozone in Beijing","authors":"Xiaowan Zhu , Jin Wu , Guiqian Tang , Lin Qiao , Tingting Han , Xiaomei Yin , Xiangxue Liu , Ziming Li , Yajun Xiong , Di He , Zhiqiang Ma","doi":"10.1016/j.jes.2022.06.033","DOIUrl":"10.1016/j.jes.2022.06.033","url":null,"abstract":"<div><p>This study analyzes the impact of circulation types (CTs) on ozone (O<sub>3</sub>) pollution in Beijing. The easterly high-pressure (SWW) circulation occurred most frequently (30%; 276 day), followed by northwesterly high-pressure (AN) circulation (24.3%; 224 day). The SWW type had the highest O<sub>3</sub> anomaly of +17.28 µg/m<sup>3</sup><span>, which was caused by excellent photochemical reactions, poor diffusion ability and regional transport. Due to the higher humidity and precipitation in the low-pressure type (C), the O</span><sub>3</sub> increase (+8.02 µg/m<sup>3</sup>) was less than that in the SWW type. Good diffusion/wet deposition and weak formation ability contributed to O<sub>3</sub> decrease in AN (-12.54 µg/m<sup>3</sup>) and northerly high-pressure (ESN) CTs (-12.26 µg/m<sup>3</sup>). The intra-area transport of O<sub>3</sub> was significant in polluted circulations (SWW- and C-CTs). In addition, higher temperature, radiation and less rainfall also contributed to higher O<sub>3</sub> in northern Beijing under the SWW type. For the clean CTs (AN and ESN CTs), precursor amount and intra-area transport played a dominant role in O<sub>3</sub> distribution. Under the northeasterly low-pressure CT, better formation conditions and higher precursor amount combined with the intra-area southerly transport to cause higher O<sub>3</sub> values in the south than in the north. The higher O<sub>3</sub> in the northwestern area under the northeasterly high-pressure type was influenced by weaker titration loss and high O<sub>3</sub> concentration in previous day. Annual variation in the CTs contributed up to 86.1% of the annual variation in O<sub>3</sub>. About 78%-83% of the diurnal variation in O<sub>3</sub> resulted from local meteorological factors.</p></div>","PeriodicalId":15774,"journal":{"name":"Journal of environmental sciences","volume":"130 ","pages":"Pages 37-51"},"PeriodicalIF":6.9,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9272535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Erratum to previously published articles","authors":"","doi":"10.1016/j.jes.2022.12.020","DOIUrl":"10.1016/j.jes.2022.12.020","url":null,"abstract":"","PeriodicalId":15774,"journal":{"name":"Journal of environmental sciences","volume":"130 ","pages":"Page 234"},"PeriodicalIF":6.9,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9264056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hanyu Zhang , Xuejun Wang , Xianbao Shen , Xin Li , Bobo Wu , Guohao Li , Huahua Bai , Xinyue Cao , Xuewei Hao , Qi Zhou , Zhiliang Yao
{"title":"Chemical characterization of volatile organic compounds (VOCs) emitted from multiple cooking cuisines and purification efficiency assessments","authors":"Hanyu Zhang , Xuejun Wang , Xianbao Shen , Xin Li , Bobo Wu , Guohao Li , Huahua Bai , Xinyue Cao , Xuewei Hao , Qi Zhou , Zhiliang Yao","doi":"10.1016/j.jes.2022.08.008","DOIUrl":"10.1016/j.jes.2022.08.008","url":null,"abstract":"<div><p>Cooking process can produce abundant volatile organic compounds (VOCs), which are harmful to environment and human health. Therefore, we conducted a comprehensive analysis in which VOCs emissions from multiple cuisines have been sampled based on the simulation and acquisition platform, involving concentration characteristics, ozone formation potential (OFP) and purification efficiency assessments. VOCs emissions varied from 1828.5 to 14,355.1 µg/m<sup>3</sup><span><span><span>, with the maximum and minimum values from Barbecue and Family cuisine, respectively. Alkanes and alcohol had higher contributions to VOCs from Sichuan and Hunan cuisine (64.1%), Family cuisine (66.3%), Shandong cuisine (69.1%) and Cantonese cuisine (69.8%), with the dominant VOCs species of ethanol, isobutane and n-butane. In comparison, alcohols (79.5%) were abundant for Huaiyang cuisine, while alkanes (19.7%), alkenes (35.9%) and haloalkanes (22.9%) accounted for higher proportions from Barbecue. Specially, </span>carbon tetrachloride, n-hexylene and 1-butene were the most abundant VOCs species for Barbecue, ranging from 8.8% to 14.6%. The highest OFP occurred in Barbecue. The sensitive species of OFP for Huaiyang cuisine were alcohols, while other cuisines were alkenes. Purification efficiency assessments shed light on the removal differences of individual and synergistic control </span>technologies. VOCs emissions exhibited a strong dependence on the photocatalytic oxidation, with the removal efficiencies of 29.0%–54.4%. However, the high voltage electrostatic, wet purification and mechanical separation techniques played a mediocre or even counterproductive role in the VOCs reduction, meanwhile collaborative control technologies could not significantly improve the removal efficiency. Our results identified more effective control technologies, which were conductive to alleviating air pollution from cooking emissions.</span></p></div>","PeriodicalId":15774,"journal":{"name":"Journal of environmental sciences","volume":"130 ","pages":"Pages 163-173"},"PeriodicalIF":6.9,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9626387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zonghong Jiang , Miao Chen , Xinqing Lee , Qianwei Feng , Ning Cheng , Xueyang Zhang , Shengsen Wang , Bing Wang
{"title":"Enhanced removal of sulfonamide antibiotics from water by phosphogypsum modified biochar composite","authors":"Zonghong Jiang , Miao Chen , Xinqing Lee , Qianwei Feng , Ning Cheng , Xueyang Zhang , Shengsen Wang , Bing Wang","doi":"10.1016/j.jes.2022.10.023","DOIUrl":"10.1016/j.jes.2022.10.023","url":null,"abstract":"<div><p><span>Antibiotic pollution has become a global eco-environmental issue. To reduce sulfonamide antibiotics in water and improve resource utilization of solid wastes, phosphogypsum modified biochar composite (PMBC) was prepared via facile one-step from distillers grains, wood chips, and phosphogypsum. The physicochemical properties<span> of PMBC were characterized by scanning electron microscope<span> (SEM), Fourier transform infrared spectroscopy (FTIR), </span></span></span>Zeta potential, X-ray diffraction (XRD), etc. The influencing factors, adsorption behaviors, and mechanisms of sulfadiazine (SD) and sulfamethazine (SMT) onto PMBC were studied by batch and fixed bed column adsorption experiments. The results showed that the removal rates of SD and SMT increased with the increase of phosphogypsum proportion, while decreased with the increase of solution pH. The maximum adsorption capacities of modified distillers grain and wood chips biochars for SD were 2.98 and 4.18 mg/g, and for SMT were 4.40 and 8.91 mg/g, respectively, which was 9.0–22.3 times that of pristine biochar. Fixed bed column results demonstrated that PMBC had good adsorption capacities for SD and SMT. When the solution flow rate was 2.0 mL/min and the dosage of PMBC was 5.0 g, the removal rates of SD and SMT by modified wood chips biochar were both higher than 50% in 4 hr. The main mechanisms of SD and SMT removal by PMBC are hydrogen bonding, π-π donor-acceptor, electrostatic interaction, and hydrophobic interaction. This study provides an effective method for the removal of antibiotics in water and the resource utilization of phosphogypsum.</p></div>","PeriodicalId":15774,"journal":{"name":"Journal of environmental sciences","volume":"130 ","pages":"Pages 174-186"},"PeriodicalIF":6.9,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9626389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}