Journal of Environmental and Engineering Geophysics最新文献

筛选
英文 中文
The Whole-Space Modeling of the Hazardous Geological Body ahead of the Tunnel Face by the Transient Electromagnetic Method 巷道工作面前方危险地质体瞬变电磁法全空间建模
IF 1 4区 工程技术
Journal of Environmental and Engineering Geophysics Pub Date : 2022-06-01 DOI: 10.32389/jeeg22-017
Hua-ming Li, Jifeng Zhang, Tian-xin Shang, Zhijian Hu, Yu Shi, Le-jun Cai, Ping Huang
{"title":"The Whole-Space Modeling of the Hazardous Geological Body ahead of the Tunnel Face by the Transient Electromagnetic Method","authors":"Hua-ming Li, Jifeng Zhang, Tian-xin Shang, Zhijian Hu, Yu Shi, Le-jun Cai, Ping Huang","doi":"10.32389/jeeg22-017","DOIUrl":"https://doi.org/10.32389/jeeg22-017","url":null,"abstract":"Karst caves are widely distributed in southwest China, causing difficulties and disasters for tunnel construction. To better detect the krast caves in front of the tunnels under construction using the transient electromagnetic method, in this paper we propose a 3-D finite element method to simulate the multi-parameter transient electromagnetic response of unfavorable geological bodies in a whole-space. First, the models of vertical water-filled faults, water-filled caves and complex geological bodies in front of the tunnel face are established. The horizontal electric field component and the vertical magnetic field component at different time in the whole-space are researched. Secondly, the electromagnetic response features of the caves with different resistivity, buried depths and scales are studied. We found that the resistivity of the target body is 10 times larger than that of the surrounding rocks, and the anomaly amplitude increases obviously with the growing distance from the target body. The deeper the buried depth, the later the anomaly appears and the smaller the anomaly amplitude. The larger the target size, the longer the transient electromagnetic response delay and the larger the anomaly amplitude. We arranged a measuring line on the tunnel face. The full-time apparent resistivity section shows the position and characteristics of the low-resistivity anomalous body, indicating that the transient electromagnetic method (TEM) has obvious advantages in detecting the low-resistivity body in front of the tunnel face. Finally, the TEM is successfully applied to the advanced detection of a karst tunnel to get the electrical distribution of the surrounding rocks in front of the tunnel face. According to the geological conditions of the excavated tunnel, the validity of the TEM in the tunnel advanced prediction is verified.","PeriodicalId":15748,"journal":{"name":"Journal of Environmental and Engineering Geophysics","volume":"11 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75374079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physically Constrained 2D Joint Inversion of Surface and Body Wave Tomography 物理约束的二维面波和体波断层成像联合反演
IF 1 4区 工程技术
Journal of Environmental and Engineering Geophysics Pub Date : 2022-06-01 DOI: 10.32389/jeeg21-031
M. Karimpour, E. Slob, L. Socco
{"title":"Physically Constrained 2D Joint Inversion of Surface and Body Wave Tomography","authors":"M. Karimpour, E. Slob, L. Socco","doi":"10.32389/jeeg21-031","DOIUrl":"https://doi.org/10.32389/jeeg21-031","url":null,"abstract":"Joint inversion of different geophysical methods is a powerful tool to overcome the limitations of individual inversions. Body wave tomography is used to obtain P-wave velocity models by inversion of P-wave travel times. Surface wave tomography is used to obtain S-wave velocity models through inversion of the dispersion curves data. Both methods have inherent limitations. We focus on the joint body and surface waves tomography inversion to reduce the limitations of each individual inversion. In our joint inversion scheme, the Poisson ratio was used as the link between P-wave and S-wave velocities, and the same geometry was imposed on the final velocity models. The joint inversion algorithm was applied to a 2D synthetic dataset and then to two 2D field datasets. We compare the obtained velocity models from individual inversions and the joint inversion. We show that the proposed joint inversion method not only produces superior velocity models but also generates physically more meaningful and accurate Poisson ratio models.","PeriodicalId":15748,"journal":{"name":"Journal of Environmental and Engineering Geophysics","volume":"40 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72962152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Subsurface Profiling Using Roadside MASW Survey: Influence of Multiple Sources and Offline Distance 基于路边MASW测量的地下剖面:多源和离线距离的影响
IF 1 4区 工程技术
Journal of Environmental and Engineering Geophysics Pub Date : 2022-06-01 DOI: 10.32389/21-010
D. Baglari, A. Dey, Jumrik Taipodia
{"title":"Subsurface Profiling Using Roadside MASW Survey: Influence of Multiple Sources and Offline Distance","authors":"D. Baglari, A. Dey, Jumrik Taipodia","doi":"10.32389/21-010","DOIUrl":"https://doi.org/10.32389/21-010","url":null,"abstract":"Roadside MASW survey utilizes traffic-generated surface wave signals for subsurface characterization and, thus, can be a useful geophysical method, especially in urban areas. However, such signals originating from vehicular movements over road surface irregularities, or sources, produce complex field records of multi-source and multi-azimuthal characteristics. Such sources are termed intra-line if they exist within the receiver spread and outer-line when they exist outside the receiver spread. In a roadside survey, the receiver spread is placed outside and parallel to the centreline of the road, thereby creating an offline distance with respect to the sources on the road. In this study, experimental investigations are conducted to determine the influence of the presence of intra-line or outer-line sources and offline distances of source positioning on the dispersion imaging of roadside MASW records. Artificial hurdles were placed deliberately at different positions on an adjacent road to determine the influence of intra-line and outer-line sources. Furthermore, receiver arrays were placed at varying offline distances with respect to the centreline of the adjacent road to assess the effect of offline distance on the dispersion imaging and subsequent shear wave velocity profile. The study finds that the dispersion images obtained from the intra-line source have better resolutions compared to those obtained from the outer-line source. Further, the presence of multiple sources during the data acquisition does not necessarily shed any detrimental influence on dispersion imaging as long as there is no contamination and mutual interferences of the raw wavefield records. As the offline distance increases, the intensity of the traffic-generated source signal diminishes. It is observed typically for the studied site that beyond an offline distance of 15 m, there remains no recognizable energy to obtain a distinct dispersion image. A comparative study of the shear wave velocity profiles obtained from a borehole, roadside, active, and passive remote MASW surveys revealed an agreeable match, thereby indicating the usability of the roadside MASW survey, especially when offline distance is not enormously large.","PeriodicalId":15748,"journal":{"name":"Journal of Environmental and Engineering Geophysics","volume":"67 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85730951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultra-complex Geological Anomalies Modeling on Transient Electromagnetic Response 瞬变电磁响应的超复杂地质异常建模
IF 1 4区 工程技术
Journal of Environmental and Engineering Geophysics Pub Date : 2022-06-01 DOI: 10.32389/jeeg22-010
Zhihai Jiang, Wenchuang Wang, Gongjin Zang, Zhaotao Yan
{"title":"Ultra-complex Geological Anomalies Modeling on Transient Electromagnetic Response","authors":"Zhihai Jiang, Wenchuang Wang, Gongjin Zang, Zhaotao Yan","doi":"10.32389/jeeg22-010","DOIUrl":"https://doi.org/10.32389/jeeg22-010","url":null,"abstract":"In reality, the spatial distribution of geological anomalies is extremely complex. In the process of numerical simulation of transient electromagnetic method, limited to the modeling level, regular sphere, cylinder, cuboid and other simple models are often used to replace the complex actual geological model. As a result, there is a large deviation between the numerical simulation results and the real transient electromagnetic response of the actual geological model, which affects the reliability of the data interpretation. In order to solve the problem of transient electromagnetic numerical simulation of complex geoelectric model, we established complex geological anomalies model based on a variety of modeling platforms, and integrated the spatial combination information of nodes, lines and surfaces of the model with the spatial information of the observation system. Then gained the unstructured mesh discrete space of the integrated model according to the Delaunay tetrahedral subdivision principle. Finally, we realized the simulation of the transient electromagnetic responses of ultra-complex models by using vector finite element method.","PeriodicalId":15748,"journal":{"name":"Journal of Environmental and Engineering Geophysics","volume":"34 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82615438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3D Modeling of Time-domain AEM Fields with IP Effect in Complex Media with Topography 复杂地形介质中带IP效应的时域AEM场三维建模
IF 1 4区 工程技术
Journal of Environmental and Engineering Geophysics Pub Date : 2022-03-01 DOI: 10.32389/jeeg21-027
M. Persova, Y. Soloveichik, D. Vagin, A. P. Sivenkova, A. S. Kiseleva, D. S. Kiselev, M. G. Tokareva
{"title":"3D Modeling of Time-domain AEM Fields with IP Effect in Complex Media with Topography","authors":"M. Persova, Y. Soloveichik, D. Vagin, A. P. Sivenkova, A. S. Kiseleva, D. S. Kiselev, M. G. Tokareva","doi":"10.32389/jeeg21-027","DOIUrl":"https://doi.org/10.32389/jeeg21-027","url":null,"abstract":"We present two approaches to solving the airborne electromagnetic (AEM) problems given the induced polarization (IP) effect: with calculating the field in a polarizable medium directly in the time domain (TD) and with calculating the EM+IP field in the frequency domain (FD) followed by a transition to the time domain. The first approach is based on calculating the field at each time step given the sources that depend on the currents excited in the medium at previous time steps. This approach allows us to use any IP decay functions. The frequency domain approach is based on the Fourier series expansion of a non-stationary source and the Cole-Cole model. In order to reduce the computational cost, we use the Hermite spline interpolation. Both approaches allow modeling EM + IP processes in complex media with topography and the curved boundaries of layers containing 3D heterogeneities. 3D modeling is performed on non-conforming hexahedral meshes generated fully automatically. The analysis of computational efficiency and verification of the developed approaches are presented in comparison with the results from other researchers. Moreover, we compare the results obtained in the time and frequency domains. The results of 3D modeling the IP effects, which are obtained for some geoelectrical models typical for AEM exploration problems, are demonstrated.","PeriodicalId":15748,"journal":{"name":"Journal of Environmental and Engineering Geophysics","volume":"20 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89928429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Standoff High-Frequency Electromagnetic Induction Response of Unsaturated Sands: A Tank-Scale Feasibility Study 非饱和砂的高频电磁感应响应:储罐规模的可行性研究
IF 1 4区 工程技术
Journal of Environmental and Engineering Geophysics Pub Date : 2022-03-01 DOI: 10.32389/jeeg21-030
D. Glaser, F. Shubitidze, B. Barrowes
{"title":"Standoff High-Frequency Electromagnetic Induction Response of Unsaturated Sands: A Tank-Scale Feasibility Study","authors":"D. Glaser, F. Shubitidze, B. Barrowes","doi":"10.32389/jeeg21-030","DOIUrl":"https://doi.org/10.32389/jeeg21-030","url":null,"abstract":"Standoff electromagnetic induction (EMI) measurements of complex conductivity and complex permittivity for engineering soil properties have the potential to revolutionize the way the US Army handles route planning and infrastructure assessment. An unmanned aerial system (UAS) based EM platform for soil interrogation would have wide reaching impact in a variety of applications including: civil infrastructure inspection, in-theater ingress and egress routing, reduction of false positives in IED detection, and permafrost mapping, among many others. Traditional frequency domain EMI instruments assess conductivity at low-frequencies, generally in the range of 1–20 kHz; however, recent advancements have resulted in instrumentation targeting a broadband range of frequencies, from 10 kHz through 20 MHz. This advancement, known as high-frequency electromagnetic induction (HFEMI) allows the potential to evaluate frequency domain relaxation effects in soils by acquiring both the in phase and quadrature response of the secondary field from the soil. Relaxation phenomena such as induced polarization and dielectric permittivity are related to important soil properties that can potentially be exploited using this HFEMI system. While conductivity measurements using the quadrature component of the EMI response are well established in EMI instrumentation, understanding of the relationship between direct electrical measurements and standoff HFEMI measurements is lacking. In an effort to illuminate this relationship between various electrical and electromagnetic methods at a scale suitable for soil property estimation, we perform side-by-side measurements using galvanic geoelectrical methods (ERT, IP), electromagnetics, time-domain reflectometry (TDR) and ground penetrating radar (GPR). We compare HFEMI obtained quadrature and in-phase responses to ERT, IP, TDR and GPR measurements. A tank-scale test cell was developed for comparison of the above methods and allowed assessment of sand at varying saturation levels. Further, the HFEMI response at varying heights above the sand surface was also assessed. Qualitative observations are reported in an initial attempt to relate the HFEMI response to important soil parameters.","PeriodicalId":15748,"journal":{"name":"Journal of Environmental and Engineering Geophysics","volume":"31 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75259391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Geophysical Assessment of Freshwater Intrusion into Saline Aquifers Beneath Plain Reservoirs 平原水库下咸水含水层淡水入侵的地球物理评价
IF 1 4区 工程技术
Journal of Environmental and Engineering Geophysics Pub Date : 2022-03-01 DOI: 10.32389/jeeg21-012
Z. Hu, Mei Liu, Yaxun Wang, Maosheng Ye, Shengxuan Li
{"title":"Geophysical Assessment of Freshwater Intrusion into Saline Aquifers Beneath Plain Reservoirs","authors":"Z. Hu, Mei Liu, Yaxun Wang, Maosheng Ye, Shengxuan Li","doi":"10.32389/jeeg21-012","DOIUrl":"https://doi.org/10.32389/jeeg21-012","url":null,"abstract":"Reservoir leakage can cause a waste of precious water resources and even severe environmental consequences. In this study, we use continuous resistivity profiling to evaluate the leakage problem of the Shuangwangcheng reservoir along the east route of the South-to-North Water Diversion Project. A numerical example was first built to validate the method's effectiveness in a saline aquifer environment. Thirty-five waterborne survey lines were then conducted with a total length of 74 km, and two ground survey lines had a length of 1.27 km each. We evaluated the quality of the overall data with the apparent resistivity of intersection points. Based on ground survey results, the resistivity value larger than 2 Ω.m at the bottom of the reservoir is regarded as leakage areas. Therefore, we divide resistivity survey results into three zones: freshwater reservoir, leakage zone, and saline aquifer. The distribution of freshwater intrusion is evaluated by fence diagram and interpolated horizontal resistivity contour maps. The delineated leakage zone is consistent with the lack of a low permeable loam layer on the north and east parts of the reservoir. The results prove that the waterborne resistivity survey method can efficiently and effectively assess leakage distribution inside a reservoir.","PeriodicalId":15748,"journal":{"name":"Journal of Environmental and Engineering Geophysics","volume":"29 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81475022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The Deserted Manor of Noer, Schleswig-Holstein, Germany. Geophysical Prospection Methods in Comparison 德国石勒苏益格-荷尔斯泰因的诺尔废弃庄园。地球物理找矿方法比较
IF 1 4区 工程技术
Journal of Environmental and Engineering Geophysics Pub Date : 2022-03-01 DOI: 10.32389/jeeg21-023
L. Costard, T. Wunderlich, Katja Grüneberg-Wehner, F. Wolf, E. Erkul, M. Gräber, W. Rabbel
{"title":"The Deserted Manor of Noer, Schleswig-Holstein, Germany. Geophysical Prospection Methods in Comparison","authors":"L. Costard, T. Wunderlich, Katja Grüneberg-Wehner, F. Wolf, E. Erkul, M. Gräber, W. Rabbel","doi":"10.32389/jeeg21-023","DOIUrl":"https://doi.org/10.32389/jeeg21-023","url":null,"abstract":"Manors are an important component of the cultural-economic history of Northern Germany and Southern Scandinavia. We present the results of a geophysical prospection that led to the identification of a previously unknown manor near the village of Noer, Schleswig-Holstein, Northern Germany. Although magnetic gradiometry provides a fast way to cover large areas, it does not provide accurate depth estimates, is affected by magnetic blanking and is unable to detect differences in water content. Therefore, we applied a combination of different geophysical methods to optimize the non-invasive reconstruction of the target and its surroundings not only with respect to building structures but also in relation to the surrounding landscape. In particular, a combination of magnetics, ground-penetrating radar (GPR), electromagnetic induction (EMI), electrical resistivity tomography (ERT), and soil samples were carried out to determine: (1) the object's exact location; (2) the building structure and state of preservation; and (3) any additional structures in the surrounding area. We detected a tripartite building of 22 by 27 m, with several inner walls, which was located underneath a topographic high on the surveyed field. The bulk structure is identifiable most clearly in the magnetic and EMI inphase component maps. GPR profiles and soil samples indicate flooring or foundations in part of the building. Their shallow depths of less than 2 m below the surface and debris clusters close to the surface indicate at least partial demolition. A surrounding wall was found about 5 m outside the building. The area in between shows no magnetic anomalies, lower resistivities in EMI and ERT, and low GPR reflection amplitudes. Soil samples suggest a moat or other water feature. Archaeological artifacts found at the location characterize the building as a 16th to 17th century brick manor. Other objects, like a suspected farmyard and access path could not be found. A comparison with historical sources suggest that the mansion is in relation to the manor Grönwohld. After a change of the owner it was degraded to a Meierhof, and subsequently the building decayed and was forgotten.","PeriodicalId":15748,"journal":{"name":"Journal of Environmental and Engineering Geophysics","volume":"30 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75759853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-Method Geophysical Mapping of a Geothermal Reservoir and Buried Channel in Langfang, Northern Part of China 廊坊地区地热储层及埋藏通道的多方法地球物理填图
IF 1 4区 工程技术
Journal of Environmental and Engineering Geophysics Pub Date : 2022-03-01 DOI: 10.32389/jeeg20-068
Baoqing Tian, X. Lei, Huazhong Jiang, Chenlu Xu, Mingpeng Song
{"title":"Multi-Method Geophysical Mapping of a Geothermal Reservoir and Buried Channel in Langfang, Northern Part of China","authors":"Baoqing Tian, X. Lei, Huazhong Jiang, Chenlu Xu, Mingpeng Song","doi":"10.32389/jeeg20-068","DOIUrl":"https://doi.org/10.32389/jeeg20-068","url":null,"abstract":"Geothermal resources are a clean and renewable energy source that can play a critical role in drastically reducing air pollution. The utilization of geothermal resources requires technical support to decrease the developing risk by applying an integrated interpretation of geophysical methods. In this study, we used geophysical methods in the Langfang region of China to design a workflow for the safe yield of geothermal resources. To do so, we conducted controlled-source audio-frequency magnetotelluric (CSAMT) soundings, shallow soil temperature surveys, radon gas measurements, and the microtremor survey method (MSM) at the geothermal exploration and development site. These geophysical analyses identified a geothermal reservoir and a buried channel in the region. The dominant fault developing in the area was identified as the best channel for heat and water based on the developed geothermal wells. In areas with relatively little geothermal exploration, this study provides a reference and demonstration for geothermal development.","PeriodicalId":15748,"journal":{"name":"Journal of Environmental and Engineering Geophysics","volume":"1 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83107695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Geophysical Reconnaissance for Siting Dryland Critical-Zone Monitoring Experiments in Southern New Mexico, USA 美国新墨西哥州南部旱地临界带监测实验选址的地球物理勘测
IF 1 4区 工程技术
Journal of Environmental and Engineering Geophysics Pub Date : 2021-12-01 DOI: 10.32389/jeeg21-022
D. Doser, M. Baker
{"title":"Geophysical Reconnaissance for Siting Dryland Critical-Zone Monitoring Experiments in Southern New Mexico, USA","authors":"D. Doser, M. Baker","doi":"10.32389/jeeg21-022","DOIUrl":"https://doi.org/10.32389/jeeg21-022","url":null,"abstract":"A dryland critical-zone observatory is planned on a piedmont setting of the Jornada Experimental Range northeast of Las Cruces, New Mexico, near a ∼10-yr eddy flux covariance tower and vegetation monitoring experiment and a 2-yr old water-uptake rainfall infiltration experiment. We carried out several geophysical surveys to help select sites that minimize geologic complexity for follow up hydrologic and biogeochemical studies that will be conducted by other researchers. First, we conducted a review of regional topography, gravity, and magnetics prior to a site visit and then collected reconnaissance magnetic and electromagnetic data to aid in planning more detailed geophysical site characterization surveys. Our initial topographic analysis using 1/3 arc-second digital elevation models (DEMs) showed the proposed area had an out-of-equilibrium curvature pointing to active erosion and possible faulting. Short-wavelength step-like topographic anomalies in the DEMs were confirmed in LiDAR elevations, and are consistent with erosionally resistant soil horizons in the old alluvial fan deposits. Comparison of 2-D density and susceptibility models based on nearby (3-8 km) hydrostratigraphic studies established that the observed regional gravity and magnetic anomalies were larger than could be modeled with the 2-D structural constraints, and established the station spacing our reconnaissance surveys would require to sample shallow soil variations. Our first site visit confirmed the general fault locations and we identified three outcropping caliche horizons distinct to alluvial channel, proximal splay and distal splay deposits in a several hundred-meter traverse that are consistent with the short-wavelength topographic features. In order to plan additional seismic, radar, gravity, and electrical surveys within a region of such high potential variability, we collected magnetic field and magnetic susceptibility measurements along two profiles at 10-50 m spacing. We found anomalies consistent with two projected faults, as well as other bedrock structures, a result significantly more complex than prior regional hydrostratigraphic mapping had suggested. We also conducted a more limited 0.5 km long ground conductivity survey with 5 m spacing that traversed the rainfall infiltration experiment site and found anomalies that aligned with one of the projected faults. The results showed deep (>6 m) 50 mS/m (milliSiemens/meter) values, indicating moister soils, on the footwall side, dropping to 20 mS/m after crossing the fault, consistent with previous observations that normal faults in the Rio Grande Valley asymmetrically influence fluid flow.","PeriodicalId":15748,"journal":{"name":"Journal of Environmental and Engineering Geophysics","volume":"7 1","pages":""},"PeriodicalIF":1.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74873478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信