{"title":"Physically Constrained 2D Joint Inversion of Surface and Body Wave Tomography","authors":"M. Karimpour, E. Slob, L. Socco","doi":"10.32389/jeeg21-031","DOIUrl":null,"url":null,"abstract":"Joint inversion of different geophysical methods is a powerful tool to overcome the limitations of individual inversions. Body wave tomography is used to obtain P-wave velocity models by inversion of P-wave travel times. Surface wave tomography is used to obtain S-wave velocity models through inversion of the dispersion curves data. Both methods have inherent limitations. We focus on the joint body and surface waves tomography inversion to reduce the limitations of each individual inversion. In our joint inversion scheme, the Poisson ratio was used as the link between P-wave and S-wave velocities, and the same geometry was imposed on the final velocity models. The joint inversion algorithm was applied to a 2D synthetic dataset and then to two 2D field datasets. We compare the obtained velocity models from individual inversions and the joint inversion. We show that the proposed joint inversion method not only produces superior velocity models but also generates physically more meaningful and accurate Poisson ratio models.","PeriodicalId":15748,"journal":{"name":"Journal of Environmental and Engineering Geophysics","volume":"40 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental and Engineering Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.32389/jeeg21-031","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Joint inversion of different geophysical methods is a powerful tool to overcome the limitations of individual inversions. Body wave tomography is used to obtain P-wave velocity models by inversion of P-wave travel times. Surface wave tomography is used to obtain S-wave velocity models through inversion of the dispersion curves data. Both methods have inherent limitations. We focus on the joint body and surface waves tomography inversion to reduce the limitations of each individual inversion. In our joint inversion scheme, the Poisson ratio was used as the link between P-wave and S-wave velocities, and the same geometry was imposed on the final velocity models. The joint inversion algorithm was applied to a 2D synthetic dataset and then to two 2D field datasets. We compare the obtained velocity models from individual inversions and the joint inversion. We show that the proposed joint inversion method not only produces superior velocity models but also generates physically more meaningful and accurate Poisson ratio models.
期刊介绍:
The JEEG (ISSN 1083-1363) is the peer-reviewed journal of the Environmental and Engineering Geophysical Society (EEGS). JEEG welcomes manuscripts on new developments in near-surface geophysics applied to environmental, engineering, and mining issues, as well as novel near-surface geophysics case histories and descriptions of new hardware aimed at the near-surface geophysics community.