{"title":"A Redundancy Switching System of Airport Weather Radar Based on Domestic FPGA","authors":"攀攀 赵","doi":"10.12677/jee.2023.111003","DOIUrl":"https://doi.org/10.12677/jee.2023.111003","url":null,"abstract":"","PeriodicalId":15661,"journal":{"name":"Journal of Electrical Engineering-elektrotechnicky Casopis","volume":"1 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66114379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Study on Starting Scheme of Large Power Motor Transformer-Motor Set in Petrochemical Plant","authors":"冠霖 吴","doi":"10.12677/jee.2023.112009","DOIUrl":"https://doi.org/10.12677/jee.2023.112009","url":null,"abstract":"","PeriodicalId":15661,"journal":{"name":"Journal of Electrical Engineering-elektrotechnicky Casopis","volume":"1 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66114535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Research on Insulation Failure Simulation and Typical Gas Release Law of Detachable Connectors in Ring Cabinet","authors":"静 赵","doi":"10.12677/jee.2023.112005","DOIUrl":"https://doi.org/10.12677/jee.2023.112005","url":null,"abstract":"","PeriodicalId":15661,"journal":{"name":"Journal of Electrical Engineering-elektrotechnicky Casopis","volume":"1 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66114612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Machine Learning Based Predictive Maintenance Solution for Transformers","authors":"子祥 王","doi":"10.12677/jee.2023.112014","DOIUrl":"https://doi.org/10.12677/jee.2023.112014","url":null,"abstract":"In order to improve the existing maintenance scheme for distribution transformers and better realise the application of big data in electricity, this paper proposes a machine learning-based predictive maintenance scheme for transformers, using data characterised by dissolved gas data in transformer oil, firstly processing the original transformer collection data, then using a hidden semi-Markov model (HSMM) to determine the operational status of the transformer, and further using an improved Convolutional neural networks are used to classify and predict abnormal data,","PeriodicalId":15661,"journal":{"name":"Journal of Electrical Engineering-elektrotechnicky Casopis","volume":"1 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66114864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Performance of closed-form equations for force between cylindrical magnets over wide range of volume, aspect ratio, and force","authors":"S. Zurek","doi":"10.2478/jee-2022-0055","DOIUrl":"https://doi.org/10.2478/jee-2022-0055","url":null,"abstract":"Abstract Four types of magnets were used in this study: neodymium NdFeB (grade N35 and N52), ferrite (Y10), and samarium-cobalt SmCo (XG30 2:17). They were chosen to represent a wide range of volumes from 0.035 to 19 cm3 (540 times), radius R from 1.5 to 12.5 mm (8 ×), length L from 0.5 to 40 mm (80 ×), aspect ratio L/R from 0.051 to 17 (330 ×), and contact forces from 0.2 to 250 N (over 1000 ×). The study shows that previously reported closed-form equations are valid only at large distances (small forces). At short distances (large forces) the calculated force diverges to infinity or the accuracy depends on the aspect ratio, and some equations fail more than others. A new equation is proposed as a small modification of a previously known function, which provides reasonable behaviour over the whole studied range. However, the accuracy is unknown in a general practical case, because theoretical calculations do not take into account imperfections of real magnets, so there is no single absolute reference.","PeriodicalId":15661,"journal":{"name":"Journal of Electrical Engineering-elektrotechnicky Casopis","volume":"73 1","pages":"405 - 412"},"PeriodicalIF":0.8,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45788404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"New application of the key term separation principle","authors":"J. Vörös","doi":"10.2478/jee-2022-0060","DOIUrl":"https://doi.org/10.2478/jee-2022-0060","url":null,"abstract":"Abstract The paper deals with a new application of the key term separation principle in identification of nonlinear dynamic systems. A multiplicative form of this operator decomposition technique is proposed and applied to the Wiener model. The resulting mathematical model is linear in both the linear and the nonlinear block parameters. Illustrative examples are included.","PeriodicalId":15661,"journal":{"name":"Journal of Electrical Engineering-elektrotechnicky Casopis","volume":"73 1","pages":"437 - 441"},"PeriodicalIF":0.8,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44077888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Run length limited CCSDS convolutional codes for optical communications","authors":"P. Farkaš, Ladislav Divinec, M. Rákus","doi":"10.2478/jee-2022-0059","DOIUrl":"https://doi.org/10.2478/jee-2022-0059","url":null,"abstract":"Abstract This paper presents the construction of RLL-ECCs (run length limited error control codes) from three selected ECCs specified by Consultative Committee for Space Data Systems (CCSDS) for optical communications. The RLL-ECCs obtained present a practical alternative to CCSDS codes with pseudo-randomizers. Their advantage is that the maximal run lengths of equal symbols in their codeword sequences are guaranteed, which is not the case if the common approach with pseudo-randomizers is used. The other advantages are that no additional redundancy is introduced into encoded codewords and that the encoding and decoding procedures of the original error control CCSDS codes do not have to be modified in the following cases: Firstly, if hard decoding is used and the transmission channel can be modeled as a BSC (binary symmetric channel) and secondly, if soft decoding and coherent BPSK (binary phase shift keying) modulation is used and the appropriate transmission channel model is an AWGN (additive white Gaussian noise) channel.","PeriodicalId":15661,"journal":{"name":"Journal of Electrical Engineering-elektrotechnicky Casopis","volume":"73 1","pages":"432 - 436"},"PeriodicalIF":0.8,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45601175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"De-noising of partial discharge ultrasonic signal of insulation bar in large motor based on GMC-wavelet","authors":"Xuejun Chen, Lin Ma, Lei Zhang, Jianhuang Zhuang","doi":"10.2478/jee-2022-0051","DOIUrl":"https://doi.org/10.2478/jee-2022-0051","url":null,"abstract":"Abstract In view of the bad operation environment of large motor, which often suffers from various strong noise interference, the partial discharge ultrasonic signal is often annihilated, which makes it difficult to detect and analyse. A de-noising method based on generalized minimax concavity (GMC) and wavelet for partial discharge (PD) ultrasonic signal is proposed. GMC is used to enhance the sparsity of PD ultrasonic signal and eliminate the high-frequency noise signal at the same time. Then the residual high-frequency sparse noise and low-frequency noise of the former are de-noised again combined with wavelet. Finally, the signal is reconstructed to achieve the purpose of de-noising the original PD ultrasonic signal with noise. Compared with ℓ1 -norm method, GMC method, wavelet method and ℓ1 -norm-wavelet method, the simulation results show that based on time domain analysis, the de-noising effect of the proposed method is obviously better than the other four methods. The SNR and MSE of the former are better than those of the latter. In addition, the insulation bar discharge model of large motor is constructed to obtain the actual PD ultrasonic signal, which further verifies its effectiveness, and its de-noising effect is also better than the four methods. This method can not only enhance the sparsity of the target signal and improve the estimation accuracy, but also achieve the de-noising effect, while retaining the effective information of PD ultrasonic signal characteristics. This method can provide new ideas for other types of PD signal de-noising, and lay the foundation for later feature analysis.","PeriodicalId":15661,"journal":{"name":"Journal of Electrical Engineering-elektrotechnicky Casopis","volume":"73 1","pages":"368 - 377"},"PeriodicalIF":0.8,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43882996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Instruction mapping techniques for processors with very long instruction word architectures","authors":"R. Mego, T. Fryza","doi":"10.2478/jee-2022-0053","DOIUrl":"https://doi.org/10.2478/jee-2022-0053","url":null,"abstract":"Abstract This paper presents an instruction mapping technique for generating a low-level assembly code for digital signal processing algorithms. This technique helps developers to implement retargetable kernel functions with the performance benefits of the low-level assembly languages. The approach is aimed at exceptionally long instruction word (VLIW) architectures, which benefits the most from the proposed method. Mapped algorithms are described by the signal-flow graphs, which are used to find possible parallel operations. The algorithm is converted into low-level code and mapped to the target architecture. This process also introduces the optimization of instruction mapping priority, which leads to the more effective code. The technique was verified on selected kernels, compared to the common programming methods, and proved that it is suitable for VLIW architectures and for portability to other systems.","PeriodicalId":15661,"journal":{"name":"Journal of Electrical Engineering-elektrotechnicky Casopis","volume":"73 1","pages":"387 - 395"},"PeriodicalIF":0.8,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48131874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Characteristic-mode analysis of coupled split-ring resonators","authors":"A. Eteng","doi":"10.2478/jee-2022-0056","DOIUrl":"https://doi.org/10.2478/jee-2022-0056","url":null,"abstract":"Abstract The coupling between closely spaced split-ring resonators, when employed as sub-components of electromagnetic structures, is an important feature often leveraged upon to provide bulk material properties. In its contribution, this paper employs characteristic-mode analysis (CMA) to examine modal interactions intrinsic to the coupling between a pair of split-ring resonators. The analysis reveals the influence of feed impedance and rotational orientation of a pair of coupled SRRs on the excited resonant modes, which, in turn, determine the power transfer levels between both SRRs and the frequencies at which these occur. The insights provided suggest the aptness of rotational orientation and feed impedance as critical design parameters for the realization of SRR-based magneto-inductive waveguides and wireless power transfer setups.","PeriodicalId":15661,"journal":{"name":"Journal of Electrical Engineering-elektrotechnicky Casopis","volume":"73 1","pages":"413 - 418"},"PeriodicalIF":0.8,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45951536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}