{"title":"Nanophotonics: Fabrications and Application of Nanoscale Optics to Novel Photonic Devices","authors":"T. Yatsui, C. Jagadish, G. Lerondel","doi":"10.1155/2015/609682","DOIUrl":"https://doi.org/10.1155/2015/609682","url":null,"abstract":"1School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan 2Department of Electronic Materials Engineering, Research School of Physics and Engineering, Australian National University, Canberra, ACT 0200, Australia 3Laboratoire de Nanotechnologie et d’Instrumentation Optique, Institut Charles Delaunay, CNRS UMR 6281, Universite de Technologie de Troyes, CS 42060, 10004 Troyes Cedex, France","PeriodicalId":156432,"journal":{"name":"Advances in Optical Technologies","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130994568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T. Hira, T. Uchiyama, Kenta Kuwamura, Yuya Kihara, Tasuku Yawatari, T. Saiki
{"title":"Switching the Localized Surface Plasmon Resonance of Single Gold Nanorods with a Phase-Change Material and the Implementation of a Cellular Automata Algorithm Using a Plasmon Particle Array","authors":"T. Hira, T. Uchiyama, Kenta Kuwamura, Yuya Kihara, Tasuku Yawatari, T. Saiki","doi":"10.1155/2015/150791","DOIUrl":"https://doi.org/10.1155/2015/150791","url":null,"abstract":"We investigate the modulation of the localized surface plasmon resonance (LSPR) of a gold nanorod (AuNR) using a GeSbTe film as an active medium. We demonstrate high-contrast switching of LSPR in an AuNR/GST/Au thin film sandwich structure upon phase change. To go beyond this single-particle switching functionality, we consider a plasmon particle system interacting with a phase-change material (PCM) to discuss the possibility of parallel processing devices with memory functionality, exploiting the plasticity and threshold behavior that are inherent characteristics of PCMs. We demonstrate that the temporal and spatial evolution of a plasmon-PCM array system can be equivalent to a cellular automata algorithm.","PeriodicalId":156432,"journal":{"name":"Advances in Optical Technologies","volume":"2015 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130181322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"GaP Homojunction LEDs Fabricated by Dressed-Photon-Phonon-Assisted Annealing","authors":"Jun Hyoung Kim, T. Kawazoe, M. Ohtsu","doi":"10.1155/2015/236014","DOIUrl":"https://doi.org/10.1155/2015/236014","url":null,"abstract":"By using a homojunction-structured GaP single crystal, we generated a photon energy higher than the bandgap energy (2.26 eV). The device was fabricated by performing dressed-photon-phonon- (DPP-) assisted annealing, while applying a forward-bias current, on a p-n homojunction structure formed by implanting a dopant (Zn) into an n-type GaP substrate. The DPP-assisted annealing increased the light emission intensity in an energy band above 2.32 eV by at least 550% compared with that before annealing.","PeriodicalId":156432,"journal":{"name":"Advances in Optical Technologies","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127387594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Realization of Ultraflat Plastic Film Using Dressed-Photon-Phonon-Assisted Selective Etching of Nanoscale Structures","authors":"T. Yatsui, W. Nomura, M. Ohtsu","doi":"10.1155/2015/701802","DOIUrl":"https://doi.org/10.1155/2015/701802","url":null,"abstract":"We compared dressed-photon-phonon (DPP) etching to conventional photochemical etching and, using a numerical analysis of topographic images of the resultant etched polymethyl methacrylate (PMMA) substrate, we determined that the DPP etching resulted in the selective etching of smaller scale structures in comparison with the conventional photochemical etching. We investigated the wavelength dependence of the PMMA substrate etching using an O2 gas. As the dissociation energy of O2 is 5.12 eV, we applied a continuous-wave (CW) He-Cd laser ( nm, 3.81 eV) for the DPP etching and a 5th-harmonic Nd:YAG laser ( nm, 5.82 eV) for the conventional photochemical etching. From the obtained atomic force microscope images, we confirmed a reduction in surface roughness, , in both cases. However, based on calculations involving the standard deviation of the height difference function, we confirmed that the conventional photochemical etching method etched the larger scale structures only, while the DPP etching process selectively etched the smaller scale features.","PeriodicalId":156432,"journal":{"name":"Advances in Optical Technologies","volume":"44 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129708206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mass Screening of Vision in the Cinemas and a Maculascope for the Masses: Revival of Haidinger’s Brush","authors":"K. Avudainayagam, Chitralekha S. Avudainayagam","doi":"10.1155/2014/692732","DOIUrl":"https://doi.org/10.1155/2014/692732","url":null,"abstract":"Haidinger’s brush, an entoptic phenomenon, is very useful in checking central vision loss and eccentric fixation. Haidinger’s brush is also used to provide vision training for subjects affected by eccentric fixation/lazy eye. We propose the use of Haidinger’s brush for mass self-screening of vision in cinema theatres in one go and at no cost to the subjects. We also suggest a simple projection technology for mass vision screening of subjects in waiting rooms or at shop windows of eye-care practitioners. Finally, we propose a new affordable handheld device for vision training. The test and the devices that we propose would increase public awareness of eye health, improve vision in children, and help prevent blindness in the elderly.","PeriodicalId":156432,"journal":{"name":"Advances in Optical Technologies","volume":"138 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123281339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Performance of All-Optical XNOR Gate Based on Two-Photon Absorption in Semiconductor Optical Amplifiers","authors":"A. Kotb","doi":"10.1155/2014/754713","DOIUrl":"https://doi.org/10.1155/2014/754713","url":null,"abstract":"All-optical logic XNOR gate is realized by a series combination of XOR and INVERT gates. This Boolean function is realized by using Mach-Zehnder interferometers (MZIs) and exploiting the nonlinear effect of two-photon absorption (TPA) in semiconductor optical amplifiers (SOAs). The employed model takes into account the impact of amplified spontaneous emission (ASE), input pulse energy, pulsewidth, SOAs carrier lifetime, and linewidth enhancement factor (α-factor) on the gate’s output quality factor (Q-factor). The outcome of this study shows that the all-optical XNOR gate is indeed feasible with the proposed scheme at 250 Gb/s with both logical correctness and acceptable quality.","PeriodicalId":156432,"journal":{"name":"Advances in Optical Technologies","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115796167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optical Biosensor Based on Microbendings Technique: An Optimized Mean to Measure the Bone Strength","authors":"Preeti Singh, A. Shrivastava","doi":"10.1155/2014/853725","DOIUrl":"https://doi.org/10.1155/2014/853725","url":null,"abstract":"Osteoporosis, a disease in humans, reduces bone mineral density. The microarchitecture of the bone gets deteriorated with change in variety of proteins in the bone. Therefore, a quantitative assessment of the strength of human bone, considering its structural properties and degradation due to aging, disease, and therapeutic treatment, becomes an integral part of the bioengineering studies. This paper presents a model of fiber optic biosensors (FOBs) which utilizes microbending technique to measure the strength of the bone. In parallel, an artificial neural network (ANN) based test bench has been developed for the optimization of FOBs strain measurement in orthoapplications using MATLAB. The performance accuracy of the given model appears to be considerable in ensuring the detection of the onset of osteoporosis.","PeriodicalId":156432,"journal":{"name":"Advances in Optical Technologies","volume":"78 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128626228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comparative Study of Fiber Bragg Gratings and Fiber Polarimetric Sensors for Structural Health Monitoring of Carbon Composites","authors":"M. Olivero, G. Perrone, A. Vallan, D. Tosi","doi":"10.1155/2014/804905","DOIUrl":"https://doi.org/10.1155/2014/804905","url":null,"abstract":"A comparative study is presented between Bragg grating (FBG) and polarimetric sensors (PS), two of the most promising fiber optic sensing techniques for the structural health monitoring of smart materials based on carbon fiber composites. The paper describes the realization of a test plate equipped with both types of sensors and reports the characterization under static and dynamic conditions, highlighting pros and cons of both technologies. The FBG setup achieves 1.15 ± 0.0016 pm/kg static load response and reproduces dynamic excitation with 0.1% frequency uncertainty; the PS system exhibits a sensitivity of 1.74 ± 0.001 mV/kg and reproduces dynamic excitation with 0.5% frequency uncertainty. It is shown that the PS technology is a good and cheap alternative to FBG for vibration-monitoring of small structures at high frequency.","PeriodicalId":156432,"journal":{"name":"Advances in Optical Technologies","volume":"67 3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115675054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C. Font, F. Santiago, G. C. Gilbreath, David Bonanno, Blerta Bajramaj, C. Wilcox, S. Restaino, S. Mathews
{"title":"Implementation of a Phase Only Spatial Light Modulator as an Atmospheric Turbulence Simulator at 1550 nm","authors":"C. Font, F. Santiago, G. C. Gilbreath, David Bonanno, Blerta Bajramaj, C. Wilcox, S. Restaino, S. Mathews","doi":"10.1155/2014/167129","DOIUrl":"https://doi.org/10.1155/2014/167129","url":null,"abstract":"Modeling and simulating atmospheric turbulence in a controlled environment have been a focus of interest for scientists for decades. The development of new technologies allows scientists to perform this task in a more realistic and controlled environment and provides powerful tools for the study and better understanding of the propagation of light through a nonstatic medium such as the atmosphere. Free space laser communications (FSLC) and studies in light propagation through the atmosphere are areas which constantly benefit from breakthroughs in technology and in the development of realistic atmospheric turbulence simulators, in particular (Santiago et al. 2011). In this paper, we present the results from the implementation of a phase only spatial light modulator (SLM) as an atmospheric turbulence simulator for light propagation in the short-wave infrared (SWIR) regime. Specifically, we demonstrate its efficacy for its use in an FSLC system, at a wavelength of 1550 nm.","PeriodicalId":156432,"journal":{"name":"Advances in Optical Technologies","volume":"21 1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123211807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Emission Spectral Control of a Silicon Light Emitting Diode Fabricated by Dressed-Photon-Phonon Assisted Annealing Using a Short Pulse Pair","authors":"T. Kawazoe, N. Wada, M. Ohtsu","doi":"10.1155/2014/958327","DOIUrl":"https://doi.org/10.1155/2014/958327","url":null,"abstract":"We fabricated a high-efficiency infrared light emitting diode (LED) via dressed-photon-phonon (DPP) assisted annealing of a p-n homojunctioned bulk Si crystal. The center wavelength in the electroluminescence (EL) spectrum of this LED was determined by the wavelength of a CW laser used in the DPP-assisted annealing. We have proposed a novel method of controlling the EL spectral shape by additionally using a pulsed light source in order to control the number of phonons for the DPP-assisted annealing. In this method, the Si crystal is irradiated with a pair of pulses having an arrival time difference between them. The number of coherent phonons created is increased (reduced) by tuning (detuning) this time difference. A Si-LED was subjected to DPP-assisted annealing using a 1.3 μm ( eV) CW laser and a mode-locked pulsed laser with a pulse width of 17 fs. When the number of phonons was increased, the EL emission spectrum broadened toward the high-energy side by 200 meV or more. The broadening towards the low-energy side was reduced to 120 meV.","PeriodicalId":156432,"journal":{"name":"Advances in Optical Technologies","volume":"320 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123551933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}