Maria Y Chavez, Mark Uchanski, Jeffery K Tomberlin
{"title":"Impacts of black soldier fly, (Diptera: Stratiomyidae) larval frass on tomato production.","authors":"Maria Y Chavez, Mark Uchanski, Jeffery K Tomberlin","doi":"10.1093/jee/toad150","DOIUrl":"10.1093/jee/toad150","url":null,"abstract":"<p><p>The \"insects as food and feed\" movement is gaining considerable momentum as a novel means to provide protein to people (i.e., food) and other animals (i.e., feed). Insects require significantly fewer resources, such as water and land, to produce, process, and distribute as a food or feed source. While the production of insect biomass has received considerable attention for use as food or feed, little is known about the value of the residual materials remaining after digestion. One insect, the black soldier fly, Hermetia illucens (L.) (Diptera: Stratiomyidae), can generate large quantities of residual (i.e., frass) that is high in nitrogen, phosphorus, and potassium. These materials could serve as a partial replacement for fertilizer or peat, thus creating added value to the insects as food and feed sector. Greenhouse studies were designed to investigate the use of frass in vegetable production. In pot studies with tomatoes, different ratios of peat:vermicompost and peat:insect frass were compared to a 100% peat control. Across all other parameters, tomato fruits and vegetative biomass did not produce significant differences across treatments, indicating results were comparable to the control (i.e., 100% peat). Thus, replacing peat with black soldier fly frass is a viable option and could allow for the peat industry to become more sustainable and regenerative. However, it should be noted that average individual tomato fruit weight was significantly (P < 0.05) higher (by 19%) in the vermicompost 10% treatment compared to the control, which did not differ from treatments including black soldier fly frass.</p>","PeriodicalId":15632,"journal":{"name":"Journal of Economic Entomology","volume":" ","pages":"1490-1495"},"PeriodicalIF":2.2,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9876529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P Glynn Tillman, Erin E Grabarczyk, Katelyn A Kesheimer, Rhammohan Balusu
{"title":"Seasonal density and natural mortality of Halyomorpha halys (Stål) and indigenous stink bugs (Hemiptera: Pentatomidae) in a field crop agroecosystem.","authors":"P Glynn Tillman, Erin E Grabarczyk, Katelyn A Kesheimer, Rhammohan Balusu","doi":"10.1093/jee/toad159","DOIUrl":"10.1093/jee/toad159","url":null,"abstract":"<p><p>Stink bugs (Hemiptera: Pentatomidae), including the exotic Halyomorpha halys (Stål), Nezara viridula (L.), and other indigenous species, are pests that damage a variety of agricultural crops. At a study site in the southeastern United States, we measured the density of stink bug species and patterns of parasitism and predation on corn, cotton, and soybean and host trees in an adjacent woodline. We assessed parasitism and predation of naturally laid egg masses in crops and sentinel egg masses in host trees and used pheromone-baited traps to determine H. halys seasonal development. Overall, H. halys and N. viridula were the dominant bugs observed. Adult H. halys were first detected each year on trees, followed by corn, and then cotton and soybean, suggesting that trees served as a source of H. halys dispersing into crops. For H. halys, more nymphs were captured in soybean than in corn or cotton. For N. viridula, more adults were captured in corn and cotton than in soybean, and more nymphs were captured in corn during 2019 and 2021 than in 2020. Percentage parasitism of N. viridula egg masses (74.2%) was higher than than that for H. halys egg masses (54.3%). Accordingly, conservation biological control has the potential to enhance parasitism of indigenous stink bugs and H. halys in field crop agroecosystems.</p>","PeriodicalId":15632,"journal":{"name":"Journal of Economic Entomology","volume":" ","pages":"1636-1648"},"PeriodicalIF":2.2,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9965760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Derick Nomuh Forbanka, Mxolisi Arnold Stemele, Lelethu Unathi-Nkosi Peter Heshula, William Diymba Dzemo, Daniel Ashie Kotey, Amon Taruvinga, Pfarelo Grace Tshivhandekano
{"title":"Distribution and fixed-precision sampling plans for diamondback moth (Lepidoptera: Plutellidae), on winter-spring cabbage.","authors":"Derick Nomuh Forbanka, Mxolisi Arnold Stemele, Lelethu Unathi-Nkosi Peter Heshula, William Diymba Dzemo, Daniel Ashie Kotey, Amon Taruvinga, Pfarelo Grace Tshivhandekano","doi":"10.1093/jee/toad156","DOIUrl":"10.1093/jee/toad156","url":null,"abstract":"<p><p>The diamondback moth (Plutella xylostella L.) is the most destructive insect pest on cabbage (Brassica oleracea var. capitata L.). Infestation by this pest usually results in the indiscriminate use of insecticides by farmers due to a lack of sampling plans for this pest. Sampling plans for P. xylostella management decisions on winter-spring cabbage in the Eastern Cape Province of South Africa were developed, through population monitoring that comprised weekly counts of immature stages of P. xylostella on 60 plants for 11 wk each during the winter and spring seasons. The mean density-variance relationship was used to describe the distribution of the pest, and number of infested plants was used to develop a fixed-precision sampling plan. All plant growth stages preceding maturation were vulnerable to P. xylostella damage resulting in yield losses. A high aggregation of P. xylostella on cabbage was observed in spring than in winter. The average sample number to estimate P. xylostella density within a 15% standard error of the mean was 35 plants. Furthermore, the estimated plant proportion action threshold (AT) was 51% with density action thresholds of 0.50 and 0.80 for spring and winter, respectively. Fitting P. xylostella cumulative counts in the winter and spring sampling plans resulted in 100% and 45% reduction in insecticide treatments. The similarity of sample size and ATs between both seasons provides evidence that a single sampling plan is practical for all cabbage growing seasons. The similarity of the estimated ATs to those acceptable in established integrated pest management programs indicates reliability.</p>","PeriodicalId":15632,"journal":{"name":"Journal of Economic Entomology","volume":" ","pages":"1551-1559"},"PeriodicalIF":2.2,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10710536/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10030178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lan Wei, Mao-Fa Yang, Ning Huang, Hou-Ding Ou, Xiu-Qin Wang, Yao Huang, Xiao-Fei Yu
{"title":"Effects of cold storage after cold acclimation on the fitness of Habrobracon hebetor (Hymenoptera: Braconidae).","authors":"Lan Wei, Mao-Fa Yang, Ning Huang, Hou-Ding Ou, Xiu-Qin Wang, Yao Huang, Xiao-Fei Yu","doi":"10.1093/jee/toad134","DOIUrl":"10.1093/jee/toad134","url":null,"abstract":"<p><p>Habrobracon hebetor (Say) (Hymenoptera: Braconidae) is a cosmopolitan, idiobiont, and gregarious ectoparasitoid, which can parasitize the larvae of several pyralid and noctuid moths. However, adult parasitoids require cold storage to ensure that adequate individuals are available when a pest outbreak occurs. To understand the effects of cold storage after acclimation on offspring fitness of H. hebetor, the development, fecundity, population parameters, and paralysis rate of the F1 generation were evaluated using an age-stage, two-sex life table. Four pairing treatments were used in this study, with refrigerated males and females (ReF×ReM), unrefrigerated females and refrigerated males (UnF×ReM), refrigerated females and unrefrigerated males (ReF×UnM), and unrefrigerated females and males (UnF×UnM, control). Cold storage after acclimation had no significant effect on the fecundity or oviposition period of F0-generation H. hebetor. Moreover, the survival rate (Sa = 61.43%), proportion of females (Nf/N = 0.41), intrinsic rate of increase (r = 0.3450), finite rate of increase (λ = 1.4121), net reproduction rate (R0 = 149.47), and net paralysis rate (C0 = 74.52) of ReF×UnM and UnF×UnM (Sa = 50.00%, Nf/N = 0.34, r = 0.3297, λ = 1.3881, R0 = 155.69, C0 = 62.90, respectively) treatments were significantly higher than those of the ReF×ReM treatment (Sa = 45%, Nf/N = 0.16, r = 0.2277, λ = 1.2558, R0 = 68.81, C0 = 31.61, respectively) (except for the Sa of UnF×UnM treatment), and there was no significant difference between the 2 treatments. Overall, it is advisable to avoid simultaneous cold storage of female and male parasitoids or to add unrefrigerated males appropriately when using cold-stored parasitoids to control pests.</p>","PeriodicalId":15632,"journal":{"name":"Journal of Economic Entomology","volume":" ","pages":"1496-1504"},"PeriodicalIF":2.2,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9843621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Christopher J Gorman, David W Crowder, Kylie D Swisher Grimm
{"title":"A high-throughput plate method for nucleic acid extraction from beet leafhopper (Hemiptera: Cicadellidae) and potato psyllid (Hemiptera: Triozidae) for pathogen detection.","authors":"Christopher J Gorman, David W Crowder, Kylie D Swisher Grimm","doi":"10.1093/jee/toad153","DOIUrl":"10.1093/jee/toad153","url":null,"abstract":"<p><p>Plant pathogens that are transmitted by insect vectors cause considerable damage to crops when pests or pathogens are not detected early in the season and populations are not controlled. Knowledge of pathogen prevalence in insect pest populations can aid growers in their insect pest management decisions but requires the timely dissemination of results. This process requires that specimen capture, identification, nucleic acid extraction, and molecular detection of a pathogen(s) occur alongside a platform for sharing results. The potato psyllid (Bactericera cockerelli, Sulc; Hemiptera: Triozidae) and beet leafhopper (Circulifer tenellus, Baker; Hemiptera: Cicadellidae) transmit pathogens to potato and other vegetable or seed crops each season in the northwestern United States. While the potato psyllid has been tested for pathogen occurrence for the past decade, testing of the beet leafhopper is a new endeavor and substantially increases the specimen number that must be tested by our laboratories each season. To aid in the rapid processing of individual insect specimens, we optimized and validated a new high-throughput 96-well plate nucleic acid extraction method for use in place of a standard 1.5-ml single-tube extraction method. Processing efficiency, in terms of total specimens processed over a 2-day period, improved 2.5-fold, and the cost associated with processing a single sample was nearly cut in half with this newly developed plate nucleic acid extraction method. Overall, this method has proven to be an excellent tool for the rapid testing of large numbers of small, individual insect vectors to enable timely dissemination of data on pathogen prevalence to growers.</p>","PeriodicalId":15632,"journal":{"name":"Journal of Economic Entomology","volume":" ","pages":"1876-1884"},"PeriodicalIF":2.2,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9997764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Amber K DeVisser, Christine Vandervoort, Rufus Isaacs, John Wise
{"title":"Systemic insecticides for control of stem gall wasp in highbush blueberry.","authors":"Amber K DeVisser, Christine Vandervoort, Rufus Isaacs, John Wise","doi":"10.1093/jee/toad162","DOIUrl":"10.1093/jee/toad162","url":null,"abstract":"<p><p>The gall wasp, Hemadas nubilipennis Ashmead, is a pest of highbush and lowbush blueberry and can pose a challenge to control with foliar sprays due to adult activity being during bloom and because larval development is within plant tissues. We hypothesized that systemic insecticides that move within the blueberry vascular system would reach areas where H. nubilipennis eggs are laid, causing larval mortality. Three application methods, crown injection, soil drench, and foliar spray were applied to potted 'Jersey' blueberry bushes at 50% and 100% rates to quantify systemic residue concentrations in shoots and leaves. Additionally, systemic insecticides were evaluated for control of gall wasps using single-shoot bioassays and measuring larval mortality at 0.01%, 0.1%, 1%, and 10% of field rate provided within a floral pick. Systemic insecticides tested in both studies included imidacloprid, flupyradifurone, and spirotetramat. The potted bush residue study determined that insecticides moved from three tested sites of entry: the roots, crown cavity, and foliage. Results from the shoot bioassays found that the mean percent larval survival of H. nubilipennis was negatively correlated with the concentration of AI detected in galls. Imidacloprid and spirotetramat were found to have the greatest potential for control of H. nubilipennis due to mortality in the shoot bioassays and similar residue concentrations in the potted bush studies to shoot bioassays. Future research should evaluate systemic insecticides applied in highbush blueberry plantings for control of H. nubilipennis using the bioassay mortality assessment method developed in this study.</p>","PeriodicalId":15632,"journal":{"name":"Journal of Economic Entomology","volume":" ","pages":"1737-1749"},"PeriodicalIF":2.2,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/d1/db/toad162.PMC10564264.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10030180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sampling Lasioderma serricorne (Coleoptera: Anobiidae) in 2 coffee bean warehouses in New Jersey.","authors":"Xiaodan Pan, Changlu Wang","doi":"10.1093/jee/toad131","DOIUrl":"10.1093/jee/toad131","url":null,"abstract":"<p><p>Cigarette beetle, Lasioderma serricorne (F.), is one of the most common stored-product pests. We monitored their population dynamics and distribution in two coffee bean warehouses in New Jersey, USA, using pheromone traps and sticky traps during September 2018-October 2020, and light traps in 2020. The two warehouses only implemented treatment procedures for controlling Indian meal moth (Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae)) during the study period. The first L. serricorne adult appeared on pheromone traps from late May to early June when temperature reached 21-22 °C, and the last L. serricorne adult appeared on pheromone traps from late October to mid-November when temperature dropped to 10-14 °C. The majority of L. serricorne was caught during July-October. Light traps caught 5.5- and 2.2-times more L. serricorne per trap than pheromone traps in Warehouse 1 and 2, respectively. Warehouse 1 had a significantly higher density of L. serricorne than Warehouse 2. The L. serricorne activity peaks were not always clear and varied between year and the two warehouses. Zero to 3 hot spots, where had the largest numbers of L. serricorne, were identified from July to October in each warehouse based on pheromone traps, and their locations were similar through the months both in 2019 and 2020. The L. serricorne counts from pheromone traps placed inside warehouse were at least 2.3-times more than those placed outside. Also, the L. serricorne active period outside of the warehouses was shorter than that from inside of the warehouses.</p>","PeriodicalId":15632,"journal":{"name":"Journal of Economic Entomology","volume":" ","pages":"1902-1910"},"PeriodicalIF":2.2,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9768612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Estimating plume reach and trapping radii for male and female Cydia pomonella (Lepidoptera: Tortricidae) captured in pheromone-kairomone baited traps in Washington State apple orchards under mating disruption.","authors":"R T Curtiss, Louis Nottingham, Larry J Gut","doi":"10.1093/jee/toad167","DOIUrl":"10.1093/jee/toad167","url":null,"abstract":"<p><p>Male Cydia pomonella (L.) (Lepidoptera: Tortricidae) dispersion has largely been studied in nonmating disrupted orchards due to synthetic pheromone interference with capture in monitoring traps. Little is known about female dispersion. This study aimed to characterize male and female dispersion in mating disrupted commercial apple orchards. Sterile C. pomonella recapture data from single-trap multiple-release experiments using PHEROCON CM-DA COMBO + AA Lure-baited orange Pherocon VI delta traps was interpreted to determine pheromone-kairomone lure-baited trap effective area, trap deployment density for effective monitoring, and absolute male and female C. pomonella density in mating disrupted Washington commercial apple orchards. The maximum plume reach of the pheromone-kairomone lure in mating disrupted orchards was <5 m from the baited trap for both sexes. Maximum dispersive distances for 95% of the released C. pomonella in mating disrupted orchards were 106 and 135 m for males and females, yielding trapping areas of 3.87 and 6.16 ha, respectively. Estimates were consistent across 3 growing seasons and represent the first records of male and female dispersal distance and monitoring trap efficacy from commercial C. pomonella mating disrupted apple orchards. With relevance to commercial monitoring programs and economic thresholds in mating disrupted orchards, traps should be deployed at a density of 1 per 3-6 ha. Capture of a single male or female C. pomonella corresponds to at least 82-104 C. pomonella within the 3-6 ha trapping area. This refined C. pomonella capture interpretation in pheromone-kairomone baited traps in mating disrupted commercial apple orchards yields more precise damage estimates and assists in insecticide-use decision making.</p>","PeriodicalId":15632,"journal":{"name":"Journal of Economic Entomology","volume":" ","pages":"1592-1603"},"PeriodicalIF":2.2,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10057294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brian N Hogg, Ian M Grettenberger, Christopher J Borkent
{"title":"Parasitism by Gryon aetherium (Hymenoptera: Scelionidae) on Bagrada hilaris (Hemiptera: Pentatomidae) eggs in northcentral California.","authors":"Brian N Hogg, Ian M Grettenberger, Christopher J Borkent","doi":"10.1093/jee/toad172","DOIUrl":"10.1093/jee/toad172","url":null,"abstract":"Bagrada bug, Bagrada hilaris (Burmeister) (Hemiptera: Pentatomidae), is an invasive pest of cruciferous crops. The parasitoid Gryon aetheriumTalamas (Hymenoptera: Scelionidae) is a promising biological control agent for B. hilaris because it can forage in the soil where B. hilaris deposits most of its eggs. In this study, we assessed parasitism by G. aetherium on B. hilaris eggs in situ in northcentral California, including the Salinas Valley where most cruciferous crops in the United States are grown. Parasitism was documented by leaving soil-filled trays under infested plants for 7–14 days, then removing eggs and holding them for emergence of parasitoids. Gryon aetherium accounted for over 99% of emerged parasitoids, and occurred at 11 of the 12 sampled sites. Of the 17,729 and 31,759 B. hilaris eggs collected in 2021 and 2022, 1,518 (8.84%) and 2,654 (8.36%) were parasitized by G. aetherium, respectively. Parasitism rates were generally higher inland and ranged from 3.64% to 44.93% in 2021 and from 1.01% to 23.04% in 2022, and never exceeded 15% on any sample dates at several coastal sites in the Salinas Valley. Discovery efficiency (a measure of the ability of parasitoids to locate egg patches) reached 80% or higher at all but 1 site, but exploitation efficiency (a measure of the ability of parasitoids to exploit the egg patch after it has been discovered) was generally <20%, suggesting that G. aetherium can locate egg patches efficiently but is less efficient at finding eggs within patches.","PeriodicalId":15632,"journal":{"name":"Journal of Economic Entomology","volume":" ","pages":"1540 - 1550"},"PeriodicalIF":2.2,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10119255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Blair Sampson, Stephen Stringer, Kim Hummer, Ebrahiem Babiker, Chris Werle, John Adamczyk, Donna Shaw
{"title":"Evaluating global Vaccinium germplasm for resistance against invasive Drosophila suzukii (Diptera: Drosophilidae).","authors":"Blair Sampson, Stephen Stringer, Kim Hummer, Ebrahiem Babiker, Chris Werle, John Adamczyk, Donna Shaw","doi":"10.1093/jee/toad081","DOIUrl":"https://doi.org/10.1093/jee/toad081","url":null,"abstract":"<p><p>Control of spotted-wing Drosophila, Drosophila suzukii, in small fruits emphasizes biological, cultural, and chemical approaches, whereas studies of host plant resistance as a form of genetic control are just getting underway. The identification of resistance patterns among genotypes of host plants whose fruit, leaves, roots, stems, or seeds are specifically targeted by an invasive pest is the first step in the development of an effective genetic control. Therefore, a detached fruit bioassay was developed to screen for D. suzukii oviposition and larval infestation within berries from 25 representative species and hybrids of wild and cultivated Vaccinium. Ten Vaccinium species showed strong resistance; among them, two wild diploids originating from within the fly's native range: V. myrtoides and V. bracteatum. Other resistant species came from the sections Pyxothamnus and Conchophyllum. They included New World V. consanguineum and V. floribundum. Large-cluster blueberry, V. amoenum, and three Floridian genotypes of related rabbiteye blueberry, V. virgatum, were the only hexaploids expressing strong resistance against D. suzukii. Most screened blueberry genotypes from managed lowbush and cultivated highbush types were susceptible to the flies' attacks (i.e., oviposition). Tetraploid blueberries tended to host the most eggs, whereas diploids and hexaploids harbored 50%-60% fewer eggs, on average. D. suzukii cannot lay eggs or complete development in the smallest, sweetest, and firmest diploid fruits. Likewise, certain genotypes of large-fruited tetraploid and hexaploid blueberry strongly curbed D. suzukii egg-laying and larval growth, indicating the possibility of heritable resistance operating against this invasive fly species.</p>","PeriodicalId":15632,"journal":{"name":"Journal of Economic Entomology","volume":"116 4","pages":"1398-1410"},"PeriodicalIF":2.2,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10356424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}