Muhammad Khubaib Zahid, Daraz Ahmad, Raheela Amin, Jinsong Bao
{"title":"Sorghum starch: Composition, structure, functionality, and strategies for its improvement","authors":"Muhammad Khubaib Zahid, Daraz Ahmad, Raheela Amin, Jinsong Bao","doi":"10.1111/1541-4337.70101","DOIUrl":"10.1111/1541-4337.70101","url":null,"abstract":"<p>Sorghum (<i>Sorghum bicolor</i> L. Moench) is increasingly recognized as a resilient and climate-adaptable crop that holds significant potential to enhance global food security sustainably. Compared to other common cereal grains, sorghum boasts a more diverse nutritional profile. The starch component accounts for more than 80% of total sorghum grain weight. Sorghum starch functionality and diverse industrial applications are determined by its physiochemical properties, including pasting, gelatinization, retrogradation, texture, and digestion kinetics. This review provides a comprehensive evaluation of the morphology, minor composition, crystalline structure, fine molecular structure, and structure–function relationships of sorghum starch. It further explores how these properties can be optimized through chemical, physical and enzymatic modifications to extend the applications of sorghum starch. Additionally, the review highlights the role of key enzymes in the biosynthesis of sorghum starch and discusses how biological modifications, enabled by advanced genetic and molecular breeding strategies, can modify starch quality. This review also provides a foundation for developing tailored sorghum varieties with enhanced starch properties that can expand applications of sorghum both in food and non-food industries, potentially contributing to global food security and sustainable agriculture.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"24 1","pages":""},"PeriodicalIF":12.0,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142918821","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhancement of soy protein functionality by conjugation or complexation with polysaccharides or polyphenols: A review","authors":"Chao Qiu, Yaxu Meng, Zhiheng Zhang, Xiaojing Li, David Julian McClements, Guanghua Li, Liming Jiang, Jinsheng Wen, Zhengyu Jin, Hangyan Ji","doi":"10.1111/1541-4337.70095","DOIUrl":"10.1111/1541-4337.70095","url":null,"abstract":"<p>Soy proteins have good nutritional quality and exhibit a range of useful functional attributes, making them a viable option for replacing animal proteins in the development of more sustainable and eco-friendly plant-based food products. Nevertheless, soy proteins are prone to denaturation and/or aggregation under conditions they encounter in some food and beverage products (including certain pH, ionic, and thermal conditions), which adversely impact their functional performance. This problem can often be overcome by covalently (conjugation) or noncovalently (complexation) linking the soy proteins to polysaccharides or polyphenols, thereby expanding their application scope. Compared to soy proteins alone, these conjugates or complexes exhibit enhanced technofunctional performance, including improved solubility, emulsification, foaming, gelling, antimicrobial properties, and antioxidant capacities. Conjugates are typically more stable than complexes, which may be an advantage for some food applications. However, complexes do not require additional regulatory approval, which makes them more suitable for most food applications. This review aims to comprehensively examine the enhancement of soy protein functionality through conjugation or complexation with polysaccharides or polyphenols. The research focuses on how these modifications enhance solubility, emulsification potential, foaming, gelling, and antioxidant properties, reduce the allergenicity of soy proteins, and enable their potential applications in plant-based food development, 3D food printing, fat substitutes, functional food carriers, and hypoallergenic foods.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"24 1","pages":""},"PeriodicalIF":12.0,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142918818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"“Raman plus X” dual-modal spectroscopy technology for food analysis: A review","authors":"Lixin Ma, Xiaonan Yang, Shanshan Xue, Ruiyun Zhou, Chen Wang, Zhiming Guo, Yansong Wang, Jianrong Cai","doi":"10.1111/1541-4337.70102","DOIUrl":"10.1111/1541-4337.70102","url":null,"abstract":"<p>Raman spectroscopy, a nondestructive optical technique that provides detailed chemical information, has attracted growing interest in the food industry. Complementary spectroscopic methods, such as near-infrared (NIR) spectroscopy, nuclear magnetic resonance (NMR), terahertz (THz) spectroscopy, laser-induced breakdown spectroscopy (LIBS), and fluorescence spectroscopy (Flu), enhance Raman spectroscopy's capabilities in various applications. The integration of Raman with these techniques, termed “Raman plus X,” has shown significant potential in agri-food analysis. This review highlights the latest advances and applications of dual-modal spectroscopy methods combining Raman spectroscopy with NIR, NMR, THz, LIBS, and Flu in food analysis. Key applications include detecting harmful contaminants, evaluating food quality, identifying adulteration, and characterizing structure. The synergistic use of Raman-based dual-modal spectroscopy provides more comprehensive information and improves modeling accuracy compared to single techniques. The review also explores the role of data fusion in multisource spectral analysis and discusses challenges and prospects of “Raman plus X,” including the development of integrated hardware and advanced data fusion algorithms. These advancements aim to streamline multisource data analysis, offering valuable insights to select appropriate analytical methods for practical applications in the food industry.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"24 1","pages":""},"PeriodicalIF":12.0,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142918815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michael Arthur, Edmund Larbi Afari, Elena-Alexandra Alexa, Mei-Jun Zhu, Michael T. Gaffney, Jesus Maria Frias Celayeta, Catherine M. Burgess
{"title":"Recent advances in examining the factors influencing the efficacy of biocides against Listeria monocytogenes biofilms in the food industry: A systematic review","authors":"Michael Arthur, Edmund Larbi Afari, Elena-Alexandra Alexa, Mei-Jun Zhu, Michael T. Gaffney, Jesus Maria Frias Celayeta, Catherine M. Burgess","doi":"10.1111/1541-4337.70083","DOIUrl":"10.1111/1541-4337.70083","url":null,"abstract":"<p>Controlling <i>Listeria monocytogenes</i> and its associated biofilms in the food industry requires various disinfection techniques, including physical, chemical, and biological treatments. Biocides, owing to their ease of use, cost-effectiveness, dissolvability in water, and efficacy against a wide range of microorganisms, are frequently selected options. Nonetheless, concerns have been raised about their efficacy in controlling <i>L. monocytogenes</i> biofilm, as laboratory-based and commercial studies have reported the persistence of this bacterium after cleaning and disinfection. This review systematically examined scientific studies, sourced from the Web of Science, Scopus, and PubMed databases between January 2010 and May 2024, that investigated the effectiveness of the most commonly used biocides in the food industry against <i>L. monocytogenes</i> biofilms. A total of 92 articles which met the screening criteria, were included, with studies utilizing biocides containing sodium hypochlorite, quaternary ammonium compounds, and peroxyacetic acid being predominant. Studies indicated that several key factors may potentially influence biocides’ efficacy against <i>L. monocytogenes</i> biofilms. These factors included strain type (persistent, sporadic), serotype, strain origin (clinical, environmental, or food), surface type (biotic or abiotic), surface material (stainless steel, polystyrene, etc.), incubation time (biofilm age) and temperature, presence of organic matter, biocide's active agent, and the co-culture of <i>L. monocytogenes</i> with other bacteria. The induction of the viable but nonculturable (VBNC) state following disinfection is also a critical concern. This review aims to provide a global understanding of how <i>L. monocytogenes</i> biofilms respond to biocides under different treatment conditions, facilitating the development of effective cleaning and disinfection strategies in the food industry.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"24 1","pages":""},"PeriodicalIF":12.0,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11684510/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142906170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lin Shu, Guiling Yang, Shufang Liu, Nan Huang, Ruike Wang, Mengxue Yang, Chen Chen
{"title":"A comprehensive review on arsenic exposure and risk assessment in infants and young children diets: Health implications and mitigation interventions in a global perspective","authors":"Lin Shu, Guiling Yang, Shufang Liu, Nan Huang, Ruike Wang, Mengxue Yang, Chen Chen","doi":"10.1111/1541-4337.70063","DOIUrl":"10.1111/1541-4337.70063","url":null,"abstract":"<p>The early stages of human development are critical for growth, and exposure to arsenic, particularly through the placenta and dietary sources, poses significant health risks. Despite extensive research, significant gaps remain in our comprehension of regional disparities in arsenic exposure and its cumulative impacts during these developmental stages. We hypothesize that infants in certain regions are at greater risk of arsenic exposure and its associated health complications. This review aims to fill these gaps by providing a comprehensive synthesis of epidemiological evidence related to arsenic exposure during early life, with an emphasis on the underlying mechanisms of arsenic toxicity that contribute to adverse health outcomes, including neurodevelopmental impairments, immune dysfunction, cardiovascular diseases, and cancer. Further, by systematically comparing dietary arsenic exposure in infants across Asia, the Americas, and Europe, our findings reveal that infants in Bangladesh, Pakistan, and India, exposed to levels significantly exceeding the health reference value range of 0.3–8 µg/kg/day, are particularly vulnerable to dietary inorganic arsenic. This comparative analysis not only highlights geographic disparities in exposure but also underscores the variability in regulatory frameworks. Finally, the review identifies early life as a critical window for dietary arsenic exposure and offers evidence-based recommendations for mitigating arsenic contamination in infant foods. These strategies include improved agricultural practices, dietary modifications, stricter regulatory limits on arsenic in infant products, and encouragement of low-arsenic dietary alternatives. Our work establishes the framework for future research and policy development aimed at reducing the burden of arsenic exposure from source to table and effectively addressing this significant public health challenge.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"24 1","pages":""},"PeriodicalIF":12.0,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142890815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dean Joel Powell, Dan Li, Ben Smith, Wei Ning Chen
{"title":"Cultivated meat microbiological safety considerations and practices","authors":"Dean Joel Powell, Dan Li, Ben Smith, Wei Ning Chen","doi":"10.1111/1541-4337.70077","DOIUrl":"10.1111/1541-4337.70077","url":null,"abstract":"<p>Cultivated meat, produced using cell culture technology, is an alternative to conventional meat production that avoids the risks from enteric pathogens associated with animal slaughter and processing. Cultivated meat therefore has significant theoretical microbiological safety advantages, though limited information is available to validate this. This review discusses sources and vectors of microbial contamination throughout cultivated meat production, introduces industry survey data to evaluate current industry practices for monitoring and mitigating these hazards, and highlights future research needs. Industry survey respondents reported an average microbiological contamination batch failure rate of 11.2%. The most common vectors were related to personnel, equipment, and the production environment, while the most commonly reported type of microbiological contaminant was bacteria. These will likely remain prominent vectors and source organisms in commercial-scale production but can be addressed by a modified combination of existing commercial food and biopharmaceutical production safety systems such as Hazard Analysis and Critical Control Points (HACCP), Good Manufacturing Practices (GMP), and Good Cell Culture Practice (GCCP). As the sector matures and embeds these and other safety management systems, microbiological contamination issues should be surmountable. Data are also included to investigate whether the limited microbiome of cultivated products poses a novel food safety risk. However, further studies are needed to assess the growth potential of microorganisms in different cultivated meat products, taking into account factors such as their composition, pH, water activity, and background microflora.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"24 1","pages":""},"PeriodicalIF":12.0,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11681928/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142890810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zahra Batool, Rajeev K. Singla, Mohammad Amjad Kamal, Bairong Shen
{"title":"Demystifying furan formation in foods: Implications for human health, detection, and control measures: A review","authors":"Zahra Batool, Rajeev K. Singla, Mohammad Amjad Kamal, Bairong Shen","doi":"10.1111/1541-4337.70087","DOIUrl":"10.1111/1541-4337.70087","url":null,"abstract":"<p>Furan (C₄H₄O), an unintended hazardous compound, is formed in various thermally processed foods through multiple pathways, raising concerns due to its potential carcinogenicity in humans. The aim of this comprehensive review was to synthesize and evaluate the latest research on furan, from its formation by different precursors to its presence in diverse food matrices, as well as the emerging methods for its detection and mitigation. Emphasizing the toxicity of furan, it explored evidence from in vitro and in vivo studies, including reproductive toxicity, carcinogenic effects, and related biomarkers. Additionally, this review focused on human risk assessments of furan exposure and discussed innovative research approaches to better understand its health risks. By consolidating current knowledge, this review provided a comprehensive perspective on furan's impact on human health and suggested future research directions to further research on furan.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"24 1","pages":""},"PeriodicalIF":12.0,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142890811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Beverages developed from pseudocereals (quinoa, buckwheat, and amaranth): Nutritional and functional properties","authors":"Hang Li, Fan Zhu, Guantian Li","doi":"10.1111/1541-4337.70081","DOIUrl":"10.1111/1541-4337.70081","url":null,"abstract":"<p>The rising global demand for nutritious, sustainable, and plant-based beverages has catalyzed interest in pseudocereal-based products, offering an innovative alternative to traditional cereals. Pseudocereals such as quinoa, buckwheat, and amaranth are valued for their exceptional nutritional profiles, including high-quality proteins, dietary fibers, and bioactive compounds. This review explores the development of pseudocereal-based beverages, emphasizing their potential as milk alternatives, fermented drinks, and beer products. The fermentation process enhances their nutritional value, bioavailability, and sensory attributes, while also reducing antinutritional factors like phytates and saponins. Moreover, these beverages exhibit promising health benefits, including antioxidant, hypoglycemic, antidiabetic, and antihypertensive effects. This review provides a comprehensive evaluation of pseudocereal-based beverages from regulatory considerations to production processes, highlighting the potential of these ancient grains in reshaping the beverage industry while addressing modern nutritional needs. Future research directions on pseudocereal-based beverages are also suggested.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"24 1","pages":""},"PeriodicalIF":12.0,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142890817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ankit Bihola, M. B. Chaudhary, M. R. Bumbadiya, Priyanka Suvera, Shaikh Adil
{"title":"Technological innovations in margarine production: Current trends and future perspectives on trans-fat removal and saturated fat replacement","authors":"Ankit Bihola, M. B. Chaudhary, M. R. Bumbadiya, Priyanka Suvera, Shaikh Adil","doi":"10.1111/1541-4337.70088","DOIUrl":"10.1111/1541-4337.70088","url":null,"abstract":"<p>The margarine market is growing globally due to its lower cost, ease of availability, large-scale commercialization, and expanding market in the bakery and confectionary industries. Butter contains greater amounts of saturated fat and has been associated with cardiovascular diseases. The trans fats generated through the hydrogenation process have several adverse impacts on human health, such as the risk of atherosclerosis, coronary heart disease, postmenopausal breast cancer, vision and neurological system impairment, type II diabetes, and obesity. Therefore, it is important to formulate margarine, low in saturated and trans fats using innovative technologies such as novel hydrogenation, interesterification techniques, and oleogel technology. By utilizing these technologies and oils with a healthy lipid profile, margarine manufacturers are able to produce healthier margarine. This review covers recent technological advancements in margarine, which include various hydrogenation techniques such as high-voltage atmospheric cold plasma hydrogenation, microwave plasma hydrogenation, dielectric-barrier discharge plasma hydrogenation, and interesterification based on supercritical CO<sub>2</sub> systems. In addition, the application of interesterified oil and oleogel (structured vegetable oils) in the production of margarine low in saturated fat is comprehensively discussed, with emphasis on the utilization of unconventional sources of oils such as tiger nut oil, <i>Moringa oleifera</i> seed oil, <i>Irvingia gabonensis</i> seed fat, winged bean oil, and hemp seed oil. The novel hydrogenation techniques can hydrogenate oils without formation of trans fats, and such hydrogenated oils could be employed in the formulation of trans-fat-free margarine. Interesterified oil treated with supercritical CO<sub>2</sub> was employed in healthy margarine development. Using the oleogel technique, various unconventional oil sources can be used in margarine formulations. The incorporation of oleogel in margarine makes it possible to improve the lipid profile of margarine due to a reduction in saturated fat content. All of these novel techniques have the potential to revolutionize the margarine industry by enabling the production of high-quality, healthy margarine.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"24 1","pages":""},"PeriodicalIF":12.0,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142851795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Recent advances of machine learning in the geographical origin traceability of food and agro-products: A review","authors":"Jiali Li, Jianping Qian, Jinyong Chen, Luis Ruiz-Garcia, Chen Dong, Qian Chen, Zihan Liu, Pengnan Xiao, Zhiyao Zhao","doi":"10.1111/1541-4337.70082","DOIUrl":"10.1111/1541-4337.70082","url":null,"abstract":"<p>The geographical origin traceability of food and agro-products has been attracted worldwide. Especially with the rise of machine learning (ML) technology, it provides cutting-edge solutions to erstwhile intractable issues to identify the origin of food and agro-products. By utilizing advanced algorithms, ML can extract feature information of food and agro-products that is closely related to origin and, more accurately, identify and trace their origins, which is of great significance to the entire food and agriculture industry. This paper provides a comprehensive overview of the state-of-the-art applications of ML in the geographical origin traceability of food and agro-products. First, commonly used ML methods are summarized. The paper then outlines the whole process of preparation for modeling, model training as well as model evaluation for building traceability models–based ML. Finally, recent applications of ML combined with different traceability techniques in the field of food and agro-products are revisited. Although ML has made many achievements in solving the geographical origin traceability problem of food and agro-products, it still has great development potential. For example, the application of ML is yet insufficient in the geographical origin traceability using DNA or computer vision techniques. The ability of ML to predict the geographical origin of food and agro-products can be further improved, for example, by increasing model interpretability, incorporating data fusion strategies, and others.</p>","PeriodicalId":155,"journal":{"name":"Comprehensive Reviews in Food Science and Food Safety","volume":"24 1","pages":""},"PeriodicalIF":12.0,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142833344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}