{"title":"Data Science bidang Pemasaran : Analisis Prilaku Pelanggan","authors":"M. Harahap, Yusniar Lubis, Zakarias Situmorang","doi":"10.47709/dsi.v1i1.1194","DOIUrl":"https://doi.org/10.47709/dsi.v1i1.1194","url":null,"abstract":"Dalam kegiatan pemasaran digital, data Science (DS) memiliki peran penting dalam memahami kinerja industri pemasaran sebelum menerapkan teknik pemasaran digital pada pemasaran produk. Hal ini dikarenakan setiap pelanggan merespons secara berbeda setiap penawaran. Perilaku pelanggan juga berubah berdasarkan waktu karena mereka mungkin memiliki kebutuhan yang berbeda pada situasi yang berbeda. Pada makalah ini fokus menyajikan analisis bisnis dengan penerapan DS untuk mengeksplorasi pola perilaku dan juga memprediksi bagaimana pelanggan akan merespons penawaran yang berbeda. Penerapan analisis data eksplorasi juga diterapkan untuk menjawab beberapa pertanyaan bisnis, dari hasil pengamatan menghasilkan lima kelompok pelanggan yang disajikan dalam bentuk visualisasi dan model Random Forest Classifier memiliki skor akurasi prediksi terbaik sebesar 91%, kemudian K neighbors Classifier dan Logistic Regression.","PeriodicalId":155875,"journal":{"name":"Data Sciences Indonesia (DSI)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130205142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Model Prediksi Prestasi Mahasiswa Berdasarkan Evaluasi Pembelajaran Menggunakan Pendekatan Data Science","authors":"Tommy Tommy, A. Husein","doi":"10.47709/dsi.v1i1.1168","DOIUrl":"https://doi.org/10.47709/dsi.v1i1.1168","url":null,"abstract":"Perguruan tinggi merupakan satuan penyelenggara pendidikan tinggi sebagai tingkat lanjut jenjang pendidikan menengah di jalur pendidikan formal. Aspek prestasi belajar merupakan salah satu aspek penilaian keberhasilan perguruan tinggi dalam proses belajar. Dalam makalah ini menyajikan hasil analisis hubungan antara pembelajaran dengan prestasi mahasiswa dimana tahapan yang dilakukan menggunakan pendetakan data science. Berdasarkan Analisis data terdapat tiga indikator penting dalam penilaian prestasi belajar yaitu pedagogi, profesional dan kepribadian. Ketiga fitur digunakan sebagai variabel dependen untuk memprediksi prestasi belajar dimana algoritma DecisionTree menghasilkan akurasi lebih baik dari pada model k-nearest neighbors (KNN), Logistic Regression, Support Vector Machine, Naive Bayes dan dengan tingkat akurasi 68%, kemudian KNN dengan akurasi 66% dan lainnya sebesar 55% pada masing-masing algoritma yang diusulkan.","PeriodicalId":155875,"journal":{"name":"Data Sciences Indonesia (DSI)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114941394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pendekatan Data Science untuk Menemukan Churn Pelanggan pada Sector Perbankan dengan Machine Learning","authors":"A. Husein, M. Harahap","doi":"10.47709/dsi.v1i1.1169","DOIUrl":"https://doi.org/10.47709/dsi.v1i1.1169","url":null,"abstract":"Peralihan pelanggan merupakan fenomena dimana pelanggan perusahaan berhenti membeli atau berinteraksi sehingga sangat penting bagi perusahaan khususnya perbankan untuk memprediksi kemungkinan churn pelanggan dan hasilnya dapat digunakan untuk membantu retensi pelanggan dan bagian dari strategi perusahaan. Makalah ini menyajikan analisis dan prediksi churn pelanggan dengan menggunakan lima model berbeda yaitu Kneighbors Classifier, Logistic Regression, Linear SVC, Random Tree Classifier dan Random Forest Classifier. Berdasarkan hasil pengujian pendekatan model Random Forest Classifier dan Kneighbors Classifier lebih baik dari pada model lain dengan akurasi sebesar 86% dan 84%. Rekayasa fitur dengan pendekatan Anova dan Chi Square memiliki pengaruh yang signifikan terhadap peningkatan kinerja model prediksi.","PeriodicalId":155875,"journal":{"name":"Data Sciences Indonesia (DSI)","volume":"181 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125244201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Harahap, Fachrul Rozi, Yennimar Yennimar, Saut Dohot Siregar
{"title":"Analisis Wawasan Penjualan Supermarket dengan Data Science","authors":"M. Harahap, Fachrul Rozi, Yennimar Yennimar, Saut Dohot Siregar","doi":"10.47709/dsi.v1i1.1173","DOIUrl":"https://doi.org/10.47709/dsi.v1i1.1173","url":null,"abstract":"Data science atau ilmu data adalah suatu disiplin ilmu yang khusus mempelajari data, khususnya data kuantitatif (data numerik), baik yang terstruktur maupun tidak terstruktur. Pemanfaatkan siklus dalam pengembangan analisis untuk membuat keputusan bisnis yang praktis dan berbasis data, dan menerapkan perubahan berdasarkan keputusan tersebut. Makalah ini menyajikan analisis wawasan yang berguna pada kumpulan transaksi penjualan supermarket selama 3 bulan dari 3 cabang yang berbeda. Berdasarkan hasil analisis nilai rating terting adalah 10, terendah 4 dengan rata-rata rating produk 6.9 dan wanita lebih dominan membeli produk Aksesoris Fashion dan pria Kesehatan & Kecantikan","PeriodicalId":155875,"journal":{"name":"Data Sciences Indonesia (DSI)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133761165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}