{"title":"Development of a CFD Simulation Framework for Aerothermal Analyses of Electric Vehicle Battery Packs","authors":"Adit Misar, Ayushi Jain, Jun Xu, Mesbah Uddin","doi":"10.1115/1.4063800","DOIUrl":"https://doi.org/10.1115/1.4063800","url":null,"abstract":"Abstract The rise of electric vehicles has driven the extensive adoption of lithium-ion batteries (LIBs) due to their favorable attributes—compactness, low resistance, high power density, and minimal self-discharge. To enhance LIB reliability, an efficient battery thermal management system is imperative. This paper introduces a finite volume-based aerothermal analysis framework for a 32-cell high-energy density LIB pack. We also explore the effectiveness of various turbulence models in capturing local hotspots, discharge rates, and current levels across different geometries and inlet velocities. Our approach involves modeling the battery using Simcenter Battery Design Studio and importing it into Simcenter star-ccm+ for aerothermal simulations in which temperature distribution, discharge rates, current levels, and maximum temperature across are monitored for aligned, cross, and staggered configurations of the battery pack under varying inlet velocities. Our findings highlight the significant impact of boundary condition modeling on simulation stability. Also we observed that the standard k–ε model provides the most accurate predictions, with prediction accuracy within 3–10% of experimental data. Moreover, we identify substantial dependencies between heat generation and discharge current, as well as thermal gradients and inlet velocity. Finally, we conclude that the aligned cell arrangement offers the best thermal uniformity and cooling efficiency.","PeriodicalId":15579,"journal":{"name":"Journal of Electrochemical Energy Conversion and Storage","volume":" 12","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135293282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Experimental study of the thermal management system of an air-cooled Li-ion battery pack with triangular spoilers","authors":"Satya Verma, Samir Saraswati","doi":"10.1115/1.4063998","DOIUrl":"https://doi.org/10.1115/1.4063998","url":null,"abstract":"Abstract This research experimentally examines the thermal behaviour of an air-cooled Li-ion battery pack with triangular spoilers. The objective is to enhance temperature uniformity and reduce the maximum temperature of the battery pack by redirecting airflow towards regions of higher temperatures using triangular spoilers. The effects of spoiler angles (a) and spoiler positions (Ds) on the thermal performance of a 24V, 10Ah aligned battery pack are investigated. The parameters used to evaluate the thermal performance are; temperature variation along as well as transverse to the airflow direction and temperature variation around the circumference of the cell. The maximum temperature (Tmax), average temperature (Tavg.), maximum temperature difference (ΔTmax), and standard deviation of the temperature (σT) are the other performance parameters that are assessed. It is observed that the temperature of the battery pack decreases along the airflow direction with both the increase in α and Ds. It happens due to the enhancement in the heat transfer rate caused by higher turbulence kinetic energy. The non-uniformity in the cell temperature around the circumference improves by 0.4 K and 1.8 K with the change in α and Ds, respectively. It is found that Tmax and Tavg. of the battery pack are reduced by a maximum value of 2.5 K and 1.55 K, respectively, compared to the case when no spoiler is used. The maximum reduction in ΔTmax and σT is found to be 2.4 K and 1.02, respectively.","PeriodicalId":15579,"journal":{"name":"Journal of Electrochemical Energy Conversion and Storage","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135634599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Swapnil Salvi, Bapiraju Surampudi, Andre Swarts, Jayant Sarlashkar, Ian Smith, Terry Alger, Ankur Jain
{"title":"Experimental and Theoretical Analysis of Immersion Cooling of a Li-Ion Battery Module","authors":"Swapnil Salvi, Bapiraju Surampudi, Andre Swarts, Jayant Sarlashkar, Ian Smith, Terry Alger, Ankur Jain","doi":"10.1115/1.4063914","DOIUrl":"https://doi.org/10.1115/1.4063914","url":null,"abstract":"Abstract Overheating of Li-ion cells and battery packs is an ongoing technological problem for electrochemical energy conversion and storage devices and systems, including in electric vehicles. Immersion cooling is a promising thermal management technique to address these challenges. This work presents experimental and theoretical analysis of the thermal and electrochemical impact of immersion cooling of a small module of Li-ion cells. Significant reduction in both surface and core temperature due to immersion cooling is observed, consistent with theoretical and simulation models developed here. However, immersion cooling is also found to result in a small but non-negligible increase in capacity fade of the cells. A number of hypotheses are formed and systematically tested through comparison of experimental measurements with theoretical modeling and simulations. Electrochemical Impedance Spectroscopy measurements indicate that the accelerated cell aging due to immersion cooling is likely to be due to enhanced lithium plating. Therefore, careful consideration of the impact of immersion cooling on long-term performance may be necessary. The results presented in this work quantify both thermal and electrochemical impacts of an important thermal management technique for Li-ion cells. These results may be of relevance for design and optimization of electrochemical energy conversion and storage systems.","PeriodicalId":15579,"journal":{"name":"Journal of Electrochemical Energy Conversion and Storage","volume":"217 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136264063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dynamic electrochemical action of Low temperature Plasma exposed NaFePO4/activated BCC Nanocomposites in Cathode applications","authors":"S Saveetha, KA Vijayalakshmi","doi":"10.1115/1.4063909","DOIUrl":"https://doi.org/10.1115/1.4063909","url":null,"abstract":"Abstract Activated BCC was composed with NaFePO4 cathode material in two distinct ratios. XRD, FTIR, FESEM, and BET were used to examine the crystal structure, functional groups, morphological features and surface area of the composites. The material's surface characteristics, such as wettability, adhesion, and conductivity analysis was proved the energy storage capacity of the material and these characteristics were magnified by the exposure to DC glow discharge plasma. In this work, the NaFePO4/activated BCC was subjected to DC glow discharge plasma with various plasma producing gases. The electrochemical investigation shows that the air plasma treated composite produces the best results when compared to the untreated sample. The enhancement of the diffusivity of the composite reveals that the plasma treated materials are appropriate for energy storage devices.","PeriodicalId":15579,"journal":{"name":"Journal of Electrochemical Energy Conversion and Storage","volume":"29 6","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136262142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Lithium battery liquid-cooled thermal management system of stepped-channel based on lightweight","authors":"Long Zhou, Shengnan Li, Ankur Jain, Guoqiang Chen, Desui Guo, Jincan Kan, Yong Zhao","doi":"10.1115/1.4063848","DOIUrl":"https://doi.org/10.1115/1.4063848","url":null,"abstract":"Abstract This study proposes a stepped channel liquid-cooled battery thermal management system based on lightweight. The impact of channel width, cell-to-cell lateral spacing, contact height, and contact angle on the effectiveness of the TCS is investigated through using numerical simulation. The weight sensitivity factor is adopted to evaluate the effect of TCS weight (mTCS) on the maximum temperature (Tmax) of battery pack. Results suggest that the channel width plays the most critical role, followed by cell-to-cell lateral spacing and contact angle, while the contact height has minimal influence. Four parameters that affect the thermal balance performance of battery pack, including the number of channels, and baffles, baffle angle, and coolant inlet velocity, are presented using orthogonal experiment. Results indicate that the number of channels and baffle angle have a significant influence on the thermal balance of battery pack, while thermal performance is largely insensitive to coolant inlet velocity and number of baffles. Based on the analysis stated in this work, an improved design of the TCS is presented that reduces weight by 54.08% while increasing Tmax only by 2.52 K.","PeriodicalId":15579,"journal":{"name":"Journal of Electrochemical Energy Conversion and Storage","volume":"72 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135570124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaoyu Liu, Lang Chen, Lijun Zhu, Jian Wang, Long Chen, Xiankai Zeng, Ziang Song, Lujun Wang
{"title":"High-Accuracy Battery SOC Estimation Strategy Based on Deep Belief Network Cascaded with Extended Kalman Filter","authors":"Xiaoyu Liu, Lang Chen, Lijun Zhu, Jian Wang, Long Chen, Xiankai Zeng, Ziang Song, Lujun Wang","doi":"10.1115/1.4063431","DOIUrl":"https://doi.org/10.1115/1.4063431","url":null,"abstract":"Abstract Battery state of charge (SOC) estimation is one of the main functions of the battery management system in electric vehicles. If the actual SOC of the battery differs significantly from the estimated value, it can lead to improper battery usage, resulting in unexpected rapid voltage drops or increases, which can affect driving safety. Therefore, high-accuracy SOC estimation is of great importance for battery management and usage. Currently used SOC estimation methods suffer from issues such as strong dependence on model parameters, error propagation from measurements, and sensitivity to initial values. In this study, we propose a high-precision SOC estimation strategy based on deep belief network (DBN) feature extraction and extended Kalman filter (EKF) for smooth output. The proposed strategy has been rigorously tested under different temperature conditions using the dynamic stress test (DST) and urban dynamometer driving schedule (US06) driving cycles. The mean absolute error (MAE) and root-mean-square error (RMSE) of the proposed strategy are controlled within 1.1% and 1.2%, respectively. This demonstrates the high-precision estimation achieved. To further validate the generality of this strategy, we also apply it to graphene batteries and conduct tests under US06 and highway fuel economy test (HWFET) driving cycles at temperatures of 25 °C and −10 °C. The test results show MAE of 0.47% and 2.01%, respectively.","PeriodicalId":15579,"journal":{"name":"Journal of Electrochemical Energy Conversion and Storage","volume":"111 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135804889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"DEVELOPMENT OF BORON CONTAINING ELECTROLYTE ADDITIVE FOR LITHIUM ION BATTERIES","authors":"Zahid Sarigol, Gulay Ozkan, Goksel Ozkan","doi":"10.1115/1.4063429","DOIUrl":"https://doi.org/10.1115/1.4063429","url":null,"abstract":"Abstract In this study, triphenylphosphine boron trifluoride (BF3 · PPh3) was synthesized to be used as an electrolyte additive in Li/LiCoO2 half-cells. Fourier-transform infrared spectroscopy, X-ray diffraction, nuclear magnetic resonance, and X-ray photoelectron spectroscopy analysis techniques were used to determine the structure and composition of the synthesized substance. The battery performance was investigated by adding certain amounts of BF3 · PPh3 in 1 M LiPF6-ethylene carbonate/dimethyl carbonate/diethyl carbonate (1:1:1 by volume) electrolyte. CR2032 coin cells were assembled with the electrodes and electrolytes prepared in the laboratory. The electrochemical behaviors of the battery were investigated via cyclic voltammetry and charge–discharge tests. The addition of 0.5 wt% and 1 wt% BF3 · PPh3 in the electrolyte improved the lithium-ion battery’s ionic conductivity and capacity retention. The results show that BF3 · PPh3 has potential applications in lithium-ion batteries.","PeriodicalId":15579,"journal":{"name":"Journal of Electrochemical Energy Conversion and Storage","volume":"72 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134948046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nano graphite-doped <i>Spartina alterniflora</i>-based hard carbon as high performance anode for sodium-ion batteries","authors":"Hongkuan Cheng, Qihang Shu, Huanyu Wei, Xingzhang Luo, Suzhen Huang, Zheng Zheng","doi":"10.1115/1.4063397","DOIUrl":"https://doi.org/10.1115/1.4063397","url":null,"abstract":"Abstract Anode materials based on hard carbon are the focus of research in the field of batteries, and bio-hard carbon is one of the most important materials. In this study, we use the invasive species Spartina alterniflora as raw material and doped with nano-graphite to produce high-performance anode materials. It can achieve a first coulomb efficiency of 67%, which is nearly 10% higher than Spartina alterniflora without nano-graphite doped. The specific capacity is close to 300 mA h g−1 under the current of 20 mA g−1. By comparison, we found that the modified Spartina alterniflora has great sodium storage capacity, and the study also proved that Spartina alterniflora material can be modified into a high-performance anode material with high economic value.","PeriodicalId":15579,"journal":{"name":"Journal of Electrochemical Energy Conversion and Storage","volume":"126 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134948216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiahao Zhang, Jiadui Chen, Ling He, Dan Liu, Kai Yang, Qinghua Liu
{"title":"State of charge estimation of lithium–ion battery based on IDRSN and BiGRU","authors":"Jiahao Zhang, Jiadui Chen, Ling He, Dan Liu, Kai Yang, Qinghua Liu","doi":"10.1115/1.4063173","DOIUrl":"https://doi.org/10.1115/1.4063173","url":null,"abstract":"Abstract The estimation of state of charge (SOC) is a critical issue in the energy management of electric vehicle (EV) power batteries. However, the current accuracy of SOC estimation methods does not meet the requirements of practical applications. Therefore, this study proposes an improved lithium-ion battery SOC estimation method that combines deep residual shrinkage network (DRSN) and bidirectional gated recurrent unit (BiGRU) to enhance the SOC estimation accuracy. First, we insert the bidirectional gated recurrent unit neural network between the global average pooling layer and the output fully connected layer of the deep residual shrinkage network. This improvement enhances the model’s expressiveness, robustness, and data learning effect. Second, we develop a new activation function called “∂_swish” to replace the original ReLU activation function in the deep residual shrinkage network. The ∂_swish activation function improves the accuracy of the deep network model and reduces the risk of overfitting by utilizing its regularization effect. Finally, we conduct experimental tests at three different temperatures using the FUDS driving cycle dataset and the DST-US06-FUDS continuous driving cycle dataset. The algorithm model’s convergence speed is verified by comparing it with other models. The results show that compared to other models, the proposed method significantly improves SOC estimation accuracy at three different temperatures. In addition, the method demonstrates a high convergence speed.","PeriodicalId":15579,"journal":{"name":"Journal of Electrochemical Energy Conversion and Storage","volume":"53 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134948204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A review on low-temperature performance management of lithium-ion batteries","authors":"Jincheng Zhan, Yifei Deng, Yaohui Gao, Jiaoyi Ren, Yuang Liu, Rao Shun, Weifeng Li, Zhenhai Gao, Yupeng Chen","doi":"10.1115/1.4063611","DOIUrl":"https://doi.org/10.1115/1.4063611","url":null,"abstract":"Abstract Lithium-ion batteries (LIBs) are widely used in electric vehicles, energy storage power stations and other portable devices for their high energy densities, long cycle life and low self-discharge rate. However, they still face several challenges. Low-temperature environments have slowed down the use of LIBs by significantly deteriorating their normal performance. This review aims to resolve this issue by clarifying the phenomenon and reasons of the deterioration of LIBs performance at low temperatures. From the perspective of system management, this review summarizes and analyzes the common performance-improving methods from two aspects including preheating and charging optimization, then depicts the future development of methods in this regard. This review is expected to inspire further studies for the improvement of the LIB performance at low temperatures.","PeriodicalId":15579,"journal":{"name":"Journal of Electrochemical Energy Conversion and Storage","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135696210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}